时间序列预测是一个在多个领域都具有重要应用价值的研究方向。随着深度学习技术的发展,各种新的时间序列预测模型层出不穷。然而,如何公平、全面地评估和比较这些模型的性能一直是一个挑战。为了解决这个问题,研究人员开发了TFB(Time series Forecasting Benchmark)工具,这是一个旨在为时间序列预测研究提供全面公平基准测试的开源库。
TFB具有以下几个主要特点:
全面性: TFB包含了多种评估策略、评估指标和基准算法,可以从多个角度对模型进行全面评估。
公平性: TFB为所有模型提供统一的评估环境和流程,确保比较的公平性。
易用性: TFB提供了清晰的代码库和详细的文档,研究人员可以轻松地使用它来评估自己的模型。
可扩展性: 研究人员可以方便地将自己的模型和数据集集成到TFB中。
可重现性: TFB的评估结果是可重现的,有助于促进研究的透明度和可信度。
TFB的工作流程主要包括以下几个步骤:
数据准备: TFB提供了多个预处理好的数据集,研究人员也可以轻松集成自己的数据集。
模型训练: 研究人员可以使用TFB提供的接口训练自己的模型,或者直接使用TFB中已实现的基准模型。
模型评估: TFB使用多种评估策略和指标对模型进行全面评估。
结果分析: TFB生成详细的评估报告,帮助研究人员深入分析模 型性能。
相比其他时间序列预测库,TFB具有以下优势:
更全面的评估策略: TFB不仅支持传统的固定窗口评估,还支持滚动预测、递增预测等多种评估策略。
更丰富的评估指标: 除了常见的MSE、MAE等指标,TFB还包含了ND、NRMSE等专门针对时间序列预测的指标。
更强的可扩展性: TFB的设计使得研究人员可以轻松地集成新的模型、数据集和评估方法。
更好的可重现性: TFB提供了详细的配置文件和运行脚本,确保实验结果可以被轻松重现。
要开始使用TFB,研究人员可以按照以下步骤操作:
安装TFB:
pip install -r requirements.txt
准备数据: TFB提供了预处理好的数据集,可以从Google Drive下载。
运行实验: TFB提供了多个实验脚本,例如:
sh ./scripts/multivariate_forecast/ILI_script/DLinear.sh
分析结果: 实验完成后,TFB会生成详细的评估报告供分析。
TFB不仅可以用于评估现有模型,还支持研究人员开发和集成自己的方法。具体步骤可以参考开发教程。
除了使用TFB提供的数据集,研究人员还可以在自己的时间序列数据上使用TFB进行评估。详细步骤可以参考评估教程。
TFB的开发得到了学术界和业界的广泛认可。它在PVLDB 2024会议上获得了最佳论文提名,这充分证明了TFB在时间序列预测研究领域的重要贡献。
在使用TFB的过程中,研究人员可能会遇到一些常见问题。例如,如何在PyCharm中运行TFB的代码?答案是需要对命令行参数进行一些转义处理。具体可以参考TFB的FAQ部分。
TFB是一个开源项目,欢迎社区成员贡献代码、报告问题或提出建议。项目的开发得到了华为云的支持,这为TFB的持续改进提供了强有力的后盾。
如果您在使用TFB的过程中有任何问题或建议,可以联系项目维护者:
您也可以直接在GitHub上提出Issue。
TFB为时间序列预测研究提供了一个强大而灵活的基准测试平台。它不仅有助于研究人员更好地评估和比较不同的预测模型,还能促进整个领域的发展。随着更多研究人员的参与和贡献,相信TFB会在未来发挥更大的作用,推动时间序列预测技术的进步。
如果您觉得TFB对您的研究有帮助,请在您的论文中引用TFB:
@article{qiu2024tfb,
title = {TFB: Towards Comprehensive and Fair Benchmarking of Time Series Forecasting Methods},
author = {Xiangfei Qiu and Jilin Hu and Lekui Zhou and Xingjian Wu and Junyang Du and Buang Zhang and Chenjuan Guo and Aoying Zhou and Christian S. Jensen and Zhenli Sheng and Bin Yang},
journal = {Proc. {VLDB} Endow.},
volume = {17},
number = {9},
pages = {2363--2377},
year = {2024}
}
让我们共同期待TFB在时间序列预测领域带来更多突破和创新! 🚀📈
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是 商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强 大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号