
SGLang是一个为大型语言模型(LLM)和视觉语言模型(VLM)设计的高效服务框架。它通过巧妙地结合后端运行时和前端语言设计,使得模型交互变得更加快速和可控。SGLang的核心特性包括:
让我们深入了解SGLang的这两大核心组件。
SGLang的后端运行时采用了多项先进技术来提升服务效率:
这些技术的综合应用大大提升了模型推理的速度和效率。
SGLang的前端语言设计灵活,易于使用,支持多种高级特性:
这些特性使得开发人员可以轻松构建复杂的LLM应用程序。
SGLang团队一直在持续改进和扩展该框架的功能。以下是一些最新的重要进展:
这些进展充分展示了SGLang在性能优化和功能扩展方面的持续努力。
SGLang提供了多种安装方式,以满足不同用户的需求:
pip install --upgrade pip
pip install "sglang[all]"
# 安装FlashInfer CUDA内核
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
git clone -b v0.3.0 https://github.com/sgl-project/sglang.git
cd sglang
pip install --upgrade pip
pip install -e "python[all]"
# 安装FlashInfer CUDA内核
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
docker run --gpus all \
-p 30000:30000 \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HF_TOKEN=<secret>" \
--ipc=host \
lmsysorg/sglang:latest \
python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000
使用Docker Compose
使用SkyPilot在Kubernetes或云上运行
每种安装方式都有其适用场景,用户可以根据自己的需求选择合适的方式。
SGLang Runtime (SRT)是一个高效的服务引擎,是SGLang框架的核心组件之一。让我们来看看如何使用SRT:
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
curl http://localhost:30000/generate \
-H "Content-Type: application/json" \
-d '{
"text": "Once upon a time,",
"sampling_params": {
"max_new_tokens": 16,
"temperature": 0
}
}'
SRT还支持OpenAI兼容的API,这使得从OpenAI API迁移变得非常简单:
import openai client = openai.Client( base_url="http://127.0.0.1:30000/v1", api_key="EMPTY") # 文本补全 response = client.completions.create( model="default", prompt="The capital of France is", temperature=0, max_tokens=32, ) print(response) # 聊天补全 response = client.chat.completions.create( model="default", messages=[ {"role": "system", "content": "You are a helpful AI assistant"}, {"role": "user", "content": "List 3 countries and their capitals."}, ], temperature=0, max_tokens=64, ) print(response) # 文本嵌入 response = client.embeddings.create( model="default", input="How are you today", ) print(response)
SRT支持流式处理、视觉功能,以及OpenAI API参考中指定的大多数Chat/Completions/Models/Batch端点功能。
SRT提供了多种参数来优化性能和资源使用:
--tp 2启用多GPU张量并行--dp 2启用多GPU数据并行--mem-fraction-static调整KV缓存池的内存使用--chunked-prefill-size设置较小的分块预填充大小--nnodes 2在多个节点上运行张量并行这些参数允许用户根据硬件配置和具体需求来优化SGLang的性能。
SGLang支持广泛的生成模型和嵌入模型:
生成模型:
嵌入模型:
SGLang还支持从ModelScope加载模型,并提供了运行大规模模型(如Llama 3.1 405B)的指南。
SGLang的前端语言可以与本地模型或API模型一起使用,是OpenAI API的替代方案。对于复杂的提示工作流程,SGLang可能更易于使用。
让我们看一个使用SGLang回答多轮问题的例子:
使用本地模型:
from sglang import function, system, user, assistant, gen, set_default_backend, RuntimeEndpoint @function def multi_turn_question(s, question_1, question_2): s += system("You are a helpful assistant.") s += user(question_1) s += assistant(gen("answer_1", max_tokens=256)) s += user(question_2) s += assistant(gen("answer_2", max_tokens=256)) set_default_backend(RuntimeEndpoint("http://localhost:30000")) state = multi_turn_question.run( question_1="What is the capital of the United States?", question_2="List two local attractions.", ) for m in state.messages(): print(m["role"], ":", m["content"]) print(state["answer_1"])
使用OpenAI模型:
from sglang import function, system, user, assistant, gen, set_default_backend, OpenAI @function def multi_turn_question(s, question_1, question_2): s += system("You are a helpful assistant.") s += user(question_1) s += assistant(gen("answer_1", max_tokens=256)) s += user(question_2) s += assistant(gen("answer_2", max_tokens=256)) set_default_backend(OpenAI("gpt-3.5-turbo")) state = multi_turn_question.run( question_1="What is the capital of the United States?", question_2="List two local attractions.", ) for m in state.messages(): print(m["role"], ":", m["content"]) print(state["answer_1"])
SGLang提供了多种强大的语言特性:
控制流: 可以在函数体内使用任何Python代码,包括控制流、嵌套函数调用和外部库。
并行处理:
使用fork启动并行提示。由于sgl.gen是非阻塞的,可以并行发出多个生成调用。
多模态:
使用sgl.image传递图像作为输入。
约束解码:
使用regex指定正则表达式作为解码约束。
JSON解码:
使用regex指定带有正则表达式的JSON模式。
批处理:
使用run_batch运行连续批处理的请求批次。
流式处理:
添加stream=True启用流式处理。
角色设置:
使用sgl.system、sgl.user和sgl.assistant设置聊天模型的角色。
这些特性使SGLang成为一个强大而灵活的工具,能够处理各种复杂的语言模型任务。
SGLang在性能方面表现出色。根据官方报告,SGLang在多个基准测试中都显示出明显的优势:
这些性能优势使SGLang成为处理大规模语言模型任务的理想选择,特别是在需要高吞吐量和低延迟的场景中。
SGLang团队已经公布了2024年第三季度的开发路线图,显示了项目的持续发展方向。这包括进一步的性能优化、更多模型的支持、以及新功能的添加。
SGLang作为一个高效的大型语言模型和视觉语言模型服务框架,通过其快速的后端运行时和灵活的前端语言,为开发人员提供了强大的工具来构建和部署复杂的AI应用。无论是在性能、易用性还是功能多样性方面,SGLang都展现出了显著的优势。
随着人工智能技术的不断发展,像SGLang这样的框架将在推动大规模语言模型的应用和创新方面发挥越来越重要的作用。对于那些希望在自己的项目中充分利用大型语言模型潜力的开发者来说,SGLang无疑是一个值得深入探索和使用的强大工具。
如果您发现SGLang项目对您的工作有帮助,请引用论文《SGLang: Efficient Execution of Structured Language Model Programs》。SGLang的开发也得益于多个开源项目的启发和代码复用,包括Guidance、vLLM、LightLLM、FlashInfer、Outlines和LMQL等。这再次体现了开源社区在推动AI技术进步方面的重要作用。
总的来说,SGLang为大型语言模型的服务 和应用开辟了新的可能性,它的持续发展值得我们密切关注。随着更多开发者和研究人员加入到SGLang的生态系统中,我们有


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都 可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
最新AI工具、AI资讯
独家AI资源、AI项目落地
