SGLang: 高效的大型语言模型和视觉语言模型服务框架

RayRay
SGLang大语言模型服务框架后端运行时前端语言Github开源项目

sglang

SGLang简介

SGLang是一个为大型语言模型(LLM)和视觉语言模型(VLM)设计的高效服务框架。它通过巧妙地结合后端运行时和前端语言设计,使得模型交互变得更加快速和可控。SGLang的核心特性包括:

  1. 高效的后端运行时
  2. 灵活的前端语言

让我们深入了解SGLang的这两大核心组件。

高效的后端运行时

SGLang的后端运行时采用了多项先进技术来提升服务效率:

  • RadixAttention前缀缓存
  • 跳跃前向受限解码
  • 连续批处理
  • Token注意力(分页注意力)
  • 张量并行
  • FlashInfer内核
  • 量化(AWQ/FP8/GPTQ/Marlin)

这些技术的综合应用大大提升了模型推理的速度和效率。

灵活的前端语言

SGLang的前端语言设计灵活,易于使用,支持多种高级特性:

  • 链式生成调用
  • 高级提示工程
  • 控制流
  • 多模态支持
  • 并行处理
  • 外部交互

这些特性使得开发人员可以轻松构建复杂的LLM应用程序。

SGLang的最新进展

SGLang团队一直在持续改进和扩展该框架的功能。以下是一些最新的重要进展:

  • 2024年9月: SGLang v0.3发布,DeepSeek MLA速度提升7倍,torch.compile速度提升1.5倍,支持多图像/视频的LLaVA-OneVision
  • 2024年7月: 使用SGLang运行时实现更快的Llama3服务(相比TensorRT-LLM和vLLM)
  • 2024年2月: SGLang通过压缩有限状态机实现3倍更快的JSON解码
  • 2024年4月: SGLang被官方LLaVA-NeXT(视频)版本采用
  • 2024年1月: SGLang通过RadixAttention实现高达5倍的推理加速
  • 2024年1月: SGLang为官方LLaVA v1.6版本演示提供服务支持

这些进展充分展示了SGLang在性能优化和功能扩展方面的持续努力。

SGLang的安装

SGLang提供了多种安装方式,以满足不同用户的需求:

  1. 使用pip安装:
pip install --upgrade pip
pip install "sglang[all]"

# 安装FlashInfer CUDA内核
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
  1. 从源代码安装:
git clone -b v0.3.0 https://github.com/sgl-project/sglang.git
cd sglang

pip install --upgrade pip
pip install -e "python[all]"

# 安装FlashInfer CUDA内核
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
  1. 使用Docker:
docker run --gpus all \
    -p 30000:30000 \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
    --env "HF_TOKEN=<secret>" \
    --ipc=host \
    lmsysorg/sglang:latest \
    python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000
  1. 使用Docker Compose

  2. 使用SkyPilot在Kubernetes或云上运行

每种安装方式都有其适用场景,用户可以根据自己的需求选择合适的方式。

SGLang Architecture

SGLang Runtime (SRT)

SGLang Runtime (SRT)是一个高效的服务引擎,是SGLang框架的核心组件之一。让我们来看看如何使用SRT:

快速开始

  1. 启动服务器:
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
  1. 发送请求:
curl http://localhost:30000/generate \
  -H "Content-Type: application/json" \
  -d '{
    "text": "Once upon a time,",
    "sampling_params": {
      "max_new_tokens": 16,
      "temperature": 0
    }
  }'

OpenAI兼容API

SRT还支持OpenAI兼容的API,这使得从OpenAI API迁移变得非常简单:

import openai client = openai.Client( base_url="http://127.0.0.1:30000/v1", api_key="EMPTY") # 文本补全 response = client.completions.create( model="default", prompt="The capital of France is", temperature=0, max_tokens=32, ) print(response) # 聊天补全 response = client.chat.completions.create( model="default", messages=[ {"role": "system", "content": "You are a helpful AI assistant"}, {"role": "user", "content": "List 3 countries and their capitals."}, ], temperature=0, max_tokens=64, ) print(response) # 文本嵌入 response = client.embeddings.create( model="default", input="How are you today", ) print(response)

SRT支持流式处理、视觉功能,以及OpenAI API参考中指定的大多数Chat/Completions/Models/Batch端点功能。

其他服务器参数

SRT提供了多种参数来优化性能和资源使用:

  • 使用--tp 2启用多GPU张量并行
  • 使用--dp 2启用多GPU数据并行
  • 使用--mem-fraction-static调整KV缓存池的内存使用
  • 使用--chunked-prefill-size设置较小的分块预填充大小
  • 使用--nnodes 2在多个节点上运行张量并行

这些参数允许用户根据硬件配置和具体需求来优化SGLang的性能。

支持的模型

SGLang支持广泛的生成模型和嵌入模型:

生成模型:

  • Llama / Llama 2 / Llama 3 / Llama 3.1
  • Mistral / Mixtral / Mistral NeMo
  • Gemma / Gemma 2
  • Qwen / Qwen 2 / Qwen 2 MoE
  • DeepSeek / DeepSeek 2
  • LLaVA-OneVision
  • LLaVA 1.5 / 1.6 / NeXT
  • Yi-VL
  • StableLM
  • Command-R
  • DBRX
  • Grok
  • ChatGLM
  • InternLM 2
  • Exaone 3

嵌入模型:

  • e5-mistral
  • gte-Qwen2

SGLang还支持从ModelScope加载模型,并提供了运行大规模模型(如Llama 3.1 405B)的指南。

Structured Generation Language (SGLang)

SGLang的前端语言可以与本地模型或API模型一起使用,是OpenAI API的替代方案。对于复杂的提示工作流程,SGLang可能更易于使用。

快速开始

让我们看一个使用SGLang回答多轮问题的例子:

使用本地模型:

from sglang import function, system, user, assistant, gen, set_default_backend, RuntimeEndpoint @function def multi_turn_question(s, question_1, question_2): s += system("You are a helpful assistant.") s += user(question_1) s += assistant(gen("answer_1", max_tokens=256)) s += user(question_2) s += assistant(gen("answer_2", max_tokens=256)) set_default_backend(RuntimeEndpoint("http://localhost:30000")) state = multi_turn_question.run( question_1="What is the capital of the United States?", question_2="List two local attractions.", ) for m in state.messages(): print(m["role"], ":", m["content"]) print(state["answer_1"])

使用OpenAI模型:

from sglang import function, system, user, assistant, gen, set_default_backend, OpenAI @function def multi_turn_question(s, question_1, question_2): s += system("You are a helpful assistant.") s += user(question_1) s += assistant(gen("answer_1", max_tokens=256)) s += user(question_2) s += assistant(gen("answer_2", max_tokens=256)) set_default_backend(OpenAI("gpt-3.5-turbo")) state = multi_turn_question.run( question_1="What is the capital of the United States?", question_2="List two local attractions.", ) for m in state.messages(): print(m["role"], ":", m["content"]) print(state["answer_1"])

语言特性

SGLang提供了多种强大的语言特性:

  1. 控制流: 可以在函数体内使用任何Python代码,包括控制流、嵌套函数调用和外部库。

  2. 并行处理: 使用fork启动并行提示。由于sgl.gen是非阻塞的,可以并行发出多个生成调用。

  3. 多模态: 使用sgl.image传递图像作为输入。

  4. 约束解码: 使用regex指定正则表达式作为解码约束。

  5. JSON解码: 使用regex指定带有正则表达式的JSON模式。

  6. 批处理: 使用run_batch运行连续批处理的请求批次。

  7. 流式处理: 添加stream=True启用流式处理。

  8. 角色设置: 使用sgl.systemsgl.usersgl.assistant设置聊天模型的角色。

这些特性使SGLang成为一个强大而灵活的工具,能够处理各种复杂的语言模型任务。

SGLang Performance

性能基准和优势

SGLang在性能方面表现出色。根据官方报告,SGLang在多个基准测试中都显示出明显的优势:

  1. 相比TensorRT-LLM和vLLM,SGLang在Llama3服务方面表现更快。
  2. 在JSON解码方面,SGLang通过压缩有限状态机实现了3倍的速度提升。
  3. 使用RadixAttention技术,SGLang实现了高达5倍的推理加速。

这些性能优势使SGLang成为处理大规模语言模型任务的理想选择,特别是在需要高吞吐量和低延迟的场景中。

未来发展路线

SGLang团队已经公布了2024年第三季度的开发路线图,显示了项目的持续发展方向。这包括进一步的性能优化、更多模型的支持、以及新功能的添加。

结论

SGLang作为一个高效的大型语言模型和视觉语言模型服务框架,通过其快速的后端运行时和灵活的前端语言,为开发人员提供了强大的工具来构建和部署复杂的AI应用。无论是在性能、易用性还是功能多样性方面,SGLang都展现出了显著的优势。

随着人工智能技术的不断发展,像SGLang这样的框架将在推动大规模语言模型的应用和创新方面发挥越来越重要的作用。对于那些希望在自己的项目中充分利用大型语言模型潜力的开发者来说,SGLang无疑是一个值得深入探索和使用的强大工具。

引用和致谢

如果您发现SGLang项目对您的工作有帮助,请引用论文《SGLang: Efficient Execution of Structured Language Model Programs》。SGLang的开发也得益于多个开源项目的启发和代码复用,包括Guidance、vLLM、LightLLM、FlashInfer、Outlines和LMQL等。这再次体现了开源社区在推动AI技术进步方面的重要作用。

总的来说,SGLang为大型语言模型的服务和应用开辟了新的可能性,它的持续发展值得我们密切关注。随着更多开发者和研究人员加入到SGLang的生态系统中,我们有

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多