Scalecast: 实用型时间序列预测库

RayRay
Scalecast时间序列预测机器学习Python库数据可视化Github开源项目

Scalecast简介

Scalecast是一个为实践者设计的时间序列预测库,旨在简化复杂的预测任务,提高预测效率和准确性。它集成了多种先进的机器学习和深度学习模型,提供了自动化的模型选择、参数优化、数据处理和结果可视化功能,使得从业者可以更专注于业务问题而非技术细节。

Scalecast Logo

主要特性

1. 易用性

Scalecast的核心是Forecaster对象,它提供了一个统一的接口来处理各种预测任务。使用Scalecast,您只需几行代码就可以完成复杂的预测流程:

from scalecast.Forecaster import Forecaster f = Forecaster( y = data['values'], current_dates = data['date'], future_dates = 24, test_length = 0, cis = False, metrics = ['rmse','mae','mape','r2'], ) f.auto_Xvar_select() f.cross_validate(k=3) f.auto_forecast() results = f.export(['lvl_fcsts','model_summaries'])

2. 多样化的模型支持

Scalecast支持多种预测模型,包括但不限于:

  • 传统统计模型: ARIMA, Theta, Holt-Winters等
  • 机器学习模型: XGBoost, LightGBM, Random Forest等
  • 深度学习模型: LSTM, RNN等
  • 高级模型: Prophet, Silverkite等

3. 动态递归预测

Scalecast采用动态递归预测方法,可以有效利用时间序列的滞后项(自回归项)作为输入,生成高质量的预测结果。

Recursive Forecasting

4. 自动化特征选择

Scalecast提供了自动化的特征选择功能,可以帮助用户找到最佳的滞后项、趋势和季节性特征:

f.auto_Xvar_select( estimator = 'lasso', alpha = .2, monitor = 'ValidationMetricValue', cross_validate = True, cvkwargs = {'k':3}, )

5. 超参数调优

Scalecast支持使用网格搜索和时间序列交叉验证进行超参数调优:

from scalecast import GridGenerator GridGenerator.get_example_grids() models = ['ridge','lasso','xgboost','lightgbm','knn'] f.tune_test_forecast( models, limit_grid_size = .2, feature_importance = True, cross_validate = True, rolling = True, k = 3, )

6. 可视化功能

Scalecast提供了丰富的可视化功能,可以轻松绘制测试集预测、未来预测、拟合值等图表:

import matplotlib.pyplot as plt fig, ax = plt.subplots(2,1, figsize = (12,6)) f.plot_test_set(models=models,order_by='TestSetRMSE',ax=ax[0]) f.plot(models=models,order_by='TestSetRMSE',ax=ax[1]) plt.show()

7. 预测流水线

Scalecast支持构建完整的预测流水线,包括数据转换、预测和结果还原:

from scalecast.Pipeline import Transformer, Reverter, Pipeline from scalecast.util import find_optimal_transformation, backtest_metrics transformer, reverter = find_optimal_transformation(f) pipeline = Pipeline( steps = [ ('Transform',transformer), ('Forecast',forecaster), ('Revert',reverter), ] ) f = pipeline.fit_predict(f) backtest_results = pipeline.backtest(f) metrics = backtest_metrics(backtest_results)

8. 模型堆叠

Scalecast提供了两种模型堆叠方法,可以进一步提高预测精度:

  • 使用scikit-learn的StackingRegressor
  • Scalecast自身的堆叠程序

9. 多变量建模

Scalecast支持多变量建模和多变量预测流水线,适用于复杂的预测场景:

from scalecast.MVForecaster import MVForecaster from scalecast.Pipeline import MVPipeline mvf = MVForecaster(f1,f2,f3) pipeline = MVPipeline( steps = [ ('Transform',[transformer1,transformer2,transformer3]), ('Forecast',mvforecaster), ('Revert',[reverter1,reverter2,reverter3]) ] ) f1, f2, f3 = pipeline.fit_predict(f1, f2, f3)

10. 迁移学习

Scalecast支持迁移学习,可以将一个Forecaster对象中训练的模型应用到另一个Forecaster对象的数据上:

f_new = Forecaster(...) f_new = infer_apply_Xvar_selection(infer_from=f,apply_to=f_new) f_new.transfer_predict(transfer_from=f,model='xgboost')

安装

安装Scalecast非常简单,只需使用pip命令:

pip install --upgrade scalecast

根据需要,您可能还需要安装一些可选的依赖包,如TensorFlow、Prophet等。

文档和资源

Scalecast提供了丰富的文档和学习资源:

此外,还有许多博客文章和教程深入介绍了Scalecast的各种功能和应用场景。

学术应用

Scalecast已在多个学术研究中得到应用,涉及领域包括客户服务行为预测、能源交易策略、流感预测等。这凸显了Scalecast在实际研究和应用中的价值。

结语

Scalecast作为一个功能强大且易用的时间序列预测库,为数据科学家和分析师提供了一个高效的工具,帮助他们更好地应对复杂的预测任务。无论是在学术研究还是商业应用中,Scalecast都展现出了巨大的潜力。随着持续的开发和社区贡献,我们可以期待Scalecast在未来为更多的时间序列预测项目带来价值。

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多