PyTorch Forecasting: 简化神经网络时间序列预测

RayRay
PyTorch Forecasting时间序列预测深度学习神经网络PyTorch LightningGithub开源项目

pytorch-forecasting

PyTorch Forecasting: 简化神经网络时间序列预测

PyTorch Forecasting 是一个基于 PyTorch 的开源 Python 包,旨在简化使用最先进的神经网络架构进行时间序列预测。它为数据科学从业者和研究人员提供了一个高级 API,可以轻松地在 pandas 数据框上训练网络模型,同时利用 PyTorch Lightning 实现可扩展的训练,支持在 CPU、单个或多个 GPU 上进行训练,并提供自动日志记录功能。

主要特性

PyTorch Forecasting 的目标是为实际应用和研究提供最先进的时间序列预测功能。该包提供了以下主要特性:

  1. 时间序列数据集类:抽象处理变量转换、缺失值、随机子采样、多种历史长度等。

  2. 基础模型类:提供时间序列模型的基本训练功能,包括 TensorBoard 日志记录和通用可视化,如实际值与预测值对比图和依赖关系图。

  3. 多种神经网络架构:提供多种针对时间序列预测的神经网络架构,这些架构经过优化可用于实际部署,并具有内置的解释能力。

  4. 多步预测指标:提供多种用于评估多步预测的时间序列指标。

  5. 超参数调优:集成 Optuna 库用于超参数调优。

安装

PyTorch Forecasting 可以通过 pip 或 conda 安装:

pip install pytorch-forecasting

conda install pytorch-forecasting pytorch -c pytorch>=1.7 -c conda-forge

可用模型

PyTorch Forecasting 提供了多种先进的时间序列预测模型:

  1. Temporal Fusion Transformers: 用于可解释的多步时间序列预测,在基准测试中比亚马逊的 DeepAR 模型性能提高了 36-69%。

  2. N-BEATS: 用于可解释的时间序列预测的神经基扩展分析,在 M4 竞赛中(作为集成模型)超越了所有其他方法,包括传统统计方法的集成。

  3. N-HiTS: 支持协变量并持续击败 N-BEATS 的神经分层插值时间序列预测模型,特别适合长期预测。

  4. DeepAR: 基于自回归递归网络的概率预测模型,是最流行的预测算法之一,常用作基准。

  5. 简单标准网络:用于基准测试的 LSTM、GRU 网络以及解码器上的 MLP。

  6. 基线模型:始终预测最新已知值的基线模型。

使用示例

以下是使用 PyTorch Forecasting 训练 Temporal Fusion Transformer 模型的简单示例:

import lightning.pytorch as pl from lightning.pytorch.loggers import TensorBoardLogger from lightning.pytorch.callbacks import EarlyStopping, LearningRateMonitor from pytorch_forecasting import TimeSeriesDataSet, TemporalFusionTransformer, QuantileLoss from lightning.pytorch.tuner import Tuner # 加载数据 data = ... # 这是一个 pandas DataFrame # 定义数据集 max_encoder_length = 36 max_prediction_length = 6 training_cutoff = "YYYY-MM-DD" # 截止日期 training = TimeSeriesDataSet( data[lambda x: x.date <= training_cutoff], time_idx= ..., # 观察时间的列名 target= ..., # 预测目标的列名 group_ids=[ ... ], # 时间序列 ID 的列名 max_encoder_length=max_encoder_length, max_prediction_length=max_prediction_length, static_categoricals=[ ... ], static_reals=[ ... ], time_varying_known_categoricals=[ ... ], time_varying_known_reals=[ ... ], time_varying_unknown_categoricals=[ ... ], time_varying_unknown_reals=[ ... ], ) # 创建验证数据集 validation = TimeSeriesDataSet.from_dataset(training, data, min_prediction_idx=training.index.time.max() + 1, stop_randomization=True) # 转换数据集为 DataLoader batch_size = 128 train_dataloader = training.to_dataloader(train=True, batch_size=batch_size, num_workers=2) val_dataloader = validation.to_dataloader(train=False, batch_size=batch_size, num_workers=2) # 创建 PyTorch Lightning Trainer early_stop_callback = EarlyStopping(monitor="val_loss", min_delta=1e-4, patience=1, verbose=False, mode="min") lr_logger = LearningRateMonitor() trainer = pl.Trainer( max_epochs=100, accelerator="auto", gradient_clip_val=0.1, limit_train_batches=30, callbacks=[lr_logger, early_stop_callback], logger=TensorBoardLogger("lightning_logs") ) # 定义模型 tft = TemporalFusionTransformer.from_dataset( training, hidden_size=32, attention_head_size=1, dropout=0.1, hidden_continuous_size=16, loss=QuantileLoss(), log_interval=2, learning_rate=0.03, reduce_on_plateau_patience=4 ) # 找到最佳学习率 res = Tuner(trainer).lr_find( tft, train_dataloaders=train_dataloader, val_dataloaders=val_dataloader, early_stop_threshold=1000.0, max_lr=0.3, ) # 训练模型 trainer.fit( tft, train_dataloaders=train_dataloader, val_dataloaders=val_dataloader, )

这个示例展示了如何使用 PyTorch Forecasting 加载数据、创建数据集、定义模型、找到最佳学习率并训练模型。

结论

PyTorch Forecasting 为时间序列预测提供了一个强大而灵活的框架。通过提供高级 API 和先进的模型架构,它使得使用神经网络进行时间序列预测变得更加简单和高效。无论是对于数据科学实践者还是研究人员,PyTorch Forecasting 都是一个值得考虑的工具,可以帮助他们更好地处理时间序列预测任务。

PyTorch Forecasting Logo

通过使用 PyTorch Forecasting,用户可以轻松地实现复杂的时间序列预测模型,同时享受 PyTorch 生态系统的所有优势。无论是进行需求预测、价格优化还是其他涉及时间序列的任务,PyTorch Forecasting 都提供了必要的工具和模型来提高预测准确性和效率。

随着深度学习在时间序列预测领域的不断发展,PyTorch Forecasting 将继续跟进最新的研究成果,为用户提供最先进的预测模型和技术。这使得它成为一个既适合实际应用又适合学术研究的理想工具。

总之,PyTorch Forecasting 为时间序列预测带来了深度学习的力量,同时保持了使用的简便性。它的出现无疑将推动时间序列预测技术的进步,为各行各业带来更准确、更可靠的预测能力。

编辑推荐精选

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

下拉加载更多