PytorchAutoDrive: 自动驾驶感知的开源框架

RayRay
PytorchAutoDrive语义分割车道检测PyTorch模型部署Github开源项目

pytorch-auto-drive

PytorchAutoDrive简介

PytorchAutoDrive是一个纯Python实现的自动驾驶感知框架,基于PyTorch深度学习框架开发。该项目由Zhengyang Feng和Shaohua Guo主要维护,旨在为自动驾驶领域的研究人员和开发者提供一个功能全面、易于使用的工具集。

主要特点

PytorchAutoDrive具有以下几个突出特点:

  1. 支持多种语义分割和车道线检测模型
  2. 基于配置文件的实现,易于修改和扩展
  3. 代码模块化程度高,易于理解和二次开发
  4. 提供数据加载、图像处理、可视化等辅助功能
  5. 支持混合精度训练,提高训练效率
  6. 集成TensorBoard日志记录
  7. 支持ONNX和TensorRT模型部署

这些特性使PytorchAutoDrive成为一个功能完备、易用性强的自动驾驶感知框架。无论是进行学术研究还是实际应用开发,都可以基于该框架快速构建和验证自己的想法。

支持的数据集

PytorchAutoDrive支持多个主流的自动驾驶数据集,包括:

语义分割数据集

  • PASCAL VOC 2012
  • Cityscapes
  • GTAV
  • SYNTHIA

其中GTAV和SYNTHIA主要用于无监督域适应(UDA)的基线设置,使用Cityscapes验证集作为验证。

车道线检测数据集

  • CULane
  • TuSimple
  • LLAMAS
  • BDD100K (进行中)

这些数据集涵盖了不同的场景和标注方式,为开发鲁棒的车道线检测算法提供了丰富的训练和测试数据。

CULane数据集示例

支持的模型

PytorchAutoDrive实现了多种经典和最新的语义分割及车道线检测模型:

语义分割模型

  • FCN (ResNet-101)
  • DeeplabV2 (ResNet-101)
  • DeeplabV3 (ResNet-101)
  • ENet
  • ERFNet

车道线检测模型

  • Baseline (支持多种骨干网络)
  • SCNN
  • RESA
  • SAD (开发中)
  • PRNet (开发中)
  • LSTR
  • LaneATT
  • BézierLaneNet

这些模型涵盖了从轻量级到大型网络的多种架构,可以根据具体需求选择合适的模型。同时,框架的模块化设计也使得添加新模型变得简单。

使用指南

安装

  1. 克隆代码仓库:
git clone https://github.com/voldemortX/pytorch-auto-drive.git cd pytorch-auto-drive
  1. 安装依赖:
pip install -r requirements.txt
  1. 按照 DATASET.md 的说明准备数据集

训练模型

以车道线检测为例,训练模型的基本命令如下:

python main_landet.py --train \ --config=<config file path> \ --mixed-precision

其中--config指定配置文件路径,--mixed-precision启用混合精度训练。

测试模型

测试模型的基本命令:

python main_landet.py --test \ --config=<config file path> \ --mixed-precision

可视化

PytorchAutoDrive提供了丰富的可视化工具,可以对图像和视频进行推理并可视化结果。详细使用方法请参考 VISUALIZATION.md

车道线检测可视化示例

模型部署

PytorchAutoDrive支持将训练好的模型导出为ONNX格式,并提供了TensorRT加速的支持。这使得模型可以更容易地部署到实际的自动驾驶系统中。详细的部署指南可以参考 DEPLOY.md

贡献指南

PytorchAutoDrive是一个开源项目,欢迎社区贡献。如果您想为项目做出贡献,请参考 CONTRIBUTING.md 了解具体的贡献流程和规范。

结语

PytorchAutoDrive为自动驾驶感知任务提供了一个全面而强大的开发框架。无论您是研究人员还是开发者,都可以利用这个工具来加速自己的工作。我们期待看到更多基于PytorchAutoDrive的创新成果,推动自动驾驶技术的进步。

如果您在使用过程中有任何问题或建议,欢迎在GitHub仓库中提出issue或pull request。让我们共同努力,为自动驾驶的未来贡献力量! 🚗💨

编辑推荐精选

潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

下拉加载更多