PytorchAutoDrive: 自动驾驶感知的开源框架

RayRay
PytorchAutoDrive语义分割车道检测PyTorch模型部署Github开源项目

pytorch-auto-drive

PytorchAutoDrive简介

PytorchAutoDrive是一个纯Python实现的自动驾驶感知框架,基于PyTorch深度学习框架开发。该项目由Zhengyang Feng和Shaohua Guo主要维护,旨在为自动驾驶领域的研究人员和开发者提供一个功能全面、易于使用的工具集。

主要特点

PytorchAutoDrive具有以下几个突出特点:

  1. 支持多种语义分割和车道线检测模型
  2. 基于配置文件的实现,易于修改和扩展
  3. 代码模块化程度高,易于理解和二次开发
  4. 提供数据加载、图像处理、可视化等辅助功能
  5. 支持混合精度训练,提高训练效率
  6. 集成TensorBoard日志记录
  7. 支持ONNX和TensorRT模型部署

这些特性使PytorchAutoDrive成为一个功能完备、易用性强的自动驾驶感知框架。无论是进行学术研究还是实际应用开发,都可以基于该框架快速构建和验证自己的想法。

支持的数据集

PytorchAutoDrive支持多个主流的自动驾驶数据集,包括:

语义分割数据集

  • PASCAL VOC 2012
  • Cityscapes
  • GTAV
  • SYNTHIA

其中GTAV和SYNTHIA主要用于无监督域适应(UDA)的基线设置,使用Cityscapes验证集作为验证。

车道线检测数据集

  • CULane
  • TuSimple
  • LLAMAS
  • BDD100K (进行中)

这些数据集涵盖了不同的场景和标注方式,为开发鲁棒的车道线检测算法提供了丰富的训练和测试数据。

CULane数据集示例

支持的模型

PytorchAutoDrive实现了多种经典和最新的语义分割及车道线检测模型:

语义分割模型

  • FCN (ResNet-101)
  • DeeplabV2 (ResNet-101)
  • DeeplabV3 (ResNet-101)
  • ENet
  • ERFNet

车道线检测模型

  • Baseline (支持多种骨干网络)
  • SCNN
  • RESA
  • SAD (开发中)
  • PRNet (开发中)
  • LSTR
  • LaneATT
  • BézierLaneNet

这些模型涵盖了从轻量级到大型网络的多种架构,可以根据具体需求选择合适的模型。同时,框架的模块化设计也使得添加新模型变得简单。

使用指南

安装

  1. 克隆代码仓库:
git clone https://github.com/voldemortX/pytorch-auto-drive.git cd pytorch-auto-drive
  1. 安装依赖:
pip install -r requirements.txt
  1. 按照 DATASET.md 的说明准备数据集

训练模型

以车道线检测为例,训练模型的基本命令如下:

python main_landet.py --train \ --config=<config file path> \ --mixed-precision

其中--config指定配置文件路径,--mixed-precision启用混合精度训练。

测试模型

测试模型的基本命令:

python main_landet.py --test \ --config=<config file path> \ --mixed-precision

可视化

PytorchAutoDrive提供了丰富的可视化工具,可以对图像和视频进行推理并可视化结果。详细使用方法请参考 VISUALIZATION.md

车道线检测可视化示例

模型部署

PytorchAutoDrive支持将训练好的模型导出为ONNX格式,并提供了TensorRT加速的支持。这使得模型可以更容易地部署到实际的自动驾驶系统中。详细的部署指南可以参考 DEPLOY.md

贡献指南

PytorchAutoDrive是一个开源项目,欢迎社区贡献。如果您想为项目做出贡献,请参考 CONTRIBUTING.md 了解具体的贡献流程和规范。

结语

PytorchAutoDrive为自动驾驶感知任务提供了一个全面而强大的开发框架。无论您是研究人员还是开发者,都可以利用这个工具来加速自己的工作。我们期待看到更多基于PytorchAutoDrive的创新成果,推动自动驾驶技术的进步。

如果您在使用过程中有任何问题或建议,欢迎在GitHub仓库中提出issue或pull request。让我们共同努力,为自动驾驶的未来贡献力量! 🚗💨

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多