在当今数据驱动的世界中,准确的时间序列预测对于各行各业的决策制定都至关重要。无论是预测销售额、估计需求还是分析趋势,时间序列分析都是一个强大的工具。然而,传统的时间序列方法往往缺乏不确定性量化的能力。这就是Orbit库的用武之地。
Orbit是由Uber开发的一个开源Python库,专门用于贝叶斯时间序列预测和推断。它的目标是为数据科学家和分析师提供一个强大而灵活的工具,用于处理复杂的时间序列问题。Orbit结合了贝叶斯方法的稳健性和现代机器学习技术的可扩展性,为用户提供了一个全面的时间序列分析解决方案。

直观的接口: Orbit提供了一个熟悉的初始化-拟合-预测接口,使得即使是贝叶斯方法的新手也能轻松上手。
多种模型支持: 目前,Orbit支持以下几种具体模型实现:
灵活的估计方法: Orbit支持多种采样和优化方法用于模型估计和推断:
概率编程后端: Orbit在底层利用概率编程语言(如PyMC3和Stan)来实现贝叶斯推断,为用户提供了强大的统计能力。
可视化工具: Orbit提供了丰富的诊断和可视化工具,帮助用户理解模型性能和预测结果。
Orbit可以通过多种方式安装:
pip install orbit-ml
git clone https://github.com/uber/orbit.git cd orbit pip install -r requirements.txt pip install .
conda install -c conda-forge orbit-ml
让我们通过一个简单的例子来展示Orbit的使用方法。我们将使用阻尼局部趋势(DLT)模型来预测失业保险申请数据。
from orbit.utils.dataset import load_iclaims from orbit.models import DLT from orbit.diagnostics.plot import plot_predicted_data # 加载对数转换后的数据 df = load_iclaims() # 训练测试集分割 test_size = 52 train_df = df[:-test_size] test_df = df[-test_size:] # 初始化和拟合模型 dlt = DLT( response_col='claims', date_col='week', regressor_col=['trend.unemploy', 'trend.filling', 'trend.job'], seasonality=52, ) dlt.fit(df=train_df) # 预测 predicted_df = dlt.predict(df=test_df) # 可视化结果 plot_predicted_data( training_actual_df=train_df, predicted_df=predicted_df, date_col=dlt.date_col, actual_col=dlt.response_col, test_actual_df=test_df )
这个例子展示了Orbit的简洁性和强大功能。只需几行代码,我们就完成了数据加载、模型训练、预测和可视化的全过程。

不确定性量化: 通过贝叶斯方法,Orbit能够自然地量化预测的不确定性,这对于风险评估和决策制定至关重要。
处理复杂模式: Orbit的模型能够捕捉复杂的时间序列模式,包括趋势、季节性和外部因素的影响。
可解释性: 贝叶斯模型提供了参数的后验分布,增强了模型的可解释性。
灵活性: Orbit支持多种模型和估计方法,用户可以根据具体问题选择最适合的方法。
可扩展 性: 尽管基于贝叶斯方法,Orbit仍然能够处理大规模数据集,这要归功于其高效的实现和优化。
Orbit在多个领域都有广泛的应用,包括但不限于:
Orbit是一个活跃的开源项目,拥有一个热情的社区。用户可以通过多种方式获得支持和参与项目:
Orbit团队持续致力于改进和扩展这个库。未来的计划包括:
Orbit为时间序列分析提供了一个强大、灵活且易于使用的贝叶斯框架。无论您是数据科学家、研究人员还是业务分析师,Orbit都能为您的时间序列预测任务提供宝贵的工具和见解。通过结合贝叶斯方法的稳健性和现代机器学习技术的可扩展性,Orbit正在推动时间序列分析的前沿。
随着数据驱动决策在各个行业变得越来越重要,像Orbit这样的工具将继续发挥关键作用,帮助组织从其时间序列数据中获得更深入的洞察和更准确的预测。无论您是刚开始探索时间序列分析,还是寻找更高级的贝叶斯方法,Orbit都值得一试。
开始您的Orbit之旅,探索贝叶斯时间序列预测 的无限可能吧!
🚀 立即在GitHub上查看Orbit 📊 阅读详细文档 💬 加入Orbit社区


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你 带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和 代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号