Optimum Quanto: 为 PyTorch 模型提供高效量化的强大工具

RayRay
Optimum Quanto量化PyTorch机器学习模型优化Github开源项目

Optimum Quanto: 为 PyTorch 模型提供高效量化的强大工具

在深度学习领域,模型量化是一项重要的技术,可以显著减少模型的计算和内存开销,从而提高推理效率并便于部署。Hugging Face 最近推出的 Optimum Quanto 是一个专为 PyTorch 模型设计的量化后端,为研究人员和开发者提供了一套强大而灵活的工具,可以轻松地对各种深度学习模型进行量化。

Optimum Quanto 的主要特性

Optimum Quanto 具有以下几个突出的特点:

  1. 易用性强: 所有功能都可在 eager 模式下使用,无需对模型进行跟踪。
  2. 设备兼容性好: 量化后的模型可以在任何设备上运行,包括 CUDA 和 MPS。
  3. 自动化程度高: 自动插入量化和反量化桩,自动插入量化的函数操作和模块。
  4. 工作流程完整: 提供从浮点模型到动态量化再到静态量化模型的无缝工作流。
  5. 序列化兼容性: 与 PyTorch 的 weight_only 和 Hugging Face 的 safetensors 兼容。
  6. 硬件加速: 在 CUDA 设备上提供加速的矩阵乘法(如 int8-int8, fp16-int4 等)。
  7. 支持多种量化精度: 支持 int2、int4、int8 和 float8 权重,以及 int8 和 float8 激活。

Optimum Quanto架构图

Optimum Quanto 的性能表现

Optimum Quanto 在保持模型精度的同时,可以显著降低模型的内存占用和推理延迟。以 meta-llama/Meta-Llama-3.1-8B 模型为例:

  1. 精度: 使用 int8/float8 权重和 float8 激活的量化模型,其性能与全精度模型非常接近。
  2. 延迟: 在有优化内核的情况下,仅量化模型权重时,量化模型的推理速度与全精度模型相当。
  3. 设备内存: 内存占用大约减少了 float 位数 / 整数位数倍。

Meta-Llama-3.1-8B模型性能对比

使用 Optimum Quanto 进行模型量化

Optimum Quanto 提供了简单直观的 API,使用户可以轻松地对 Hugging Face 模型进行量化。以下是一个基本的量化工作流程:

  1. 安装 Optimum Quanto:
pip install optimum-quanto
  1. 量化模型:
from transformers import AutoModelForCausalLM from optimum.quanto import QuantizedModelForCausalLM, qint4 model = AutoModelForCausalLM.from_pretrained('meta-llama/Meta-Llama-3-8B') qmodel = QuantizedModelForCausalLM.quantize(model, weights=qint4, exclude='lm_head')
  1. 保存量化后的模型:
qmodel.save_pretrained('./Llama-3-8B-quantized')
  1. 加载量化后的模型:
from optimum.quanto import QuantizedModelForCausalLM qmodel = QuantizedModelForCausalLM.from_pretrained('Llama-3-8B-quantized')

除了对语言模型的支持,Optimum Quanto 还可以用于量化 Diffusers 模型中的子模型,为各种深度学习任务提供全面的量化支持。

Optimum Quanto 的设计理念

Optimum Quanto 的核心是一个 Tensor 子类,它负责:

  1. 将源 Tensor 投影到给定目标类型的最佳范围内。
  2. 将投影后的值映射到目标类型。

这种设计允许 Quanto 在保持精度的同时,最大限度地减少饱和值和被置零值的数量。对于 int8 和 float8,投影是按张量或按通道对称的;对于更低的位宽,则采用分组仿射(带有偏移或"零点")的方式。

在模块层面,Quanto 提供了一种通用机制,可以将 torch 模块替换为能够处理 quanto 张量的 optimum-quanto 模块。这些模块在模型被冻结之前动态转换其权重,虽然会稍微减慢推理速度,但允许模型进行微调。

结语

Optimum Quanto 为 PyTorch 模型量化提供了一个强大而灵活的解决方案。它不仅简化了量化过程,还在各种设备上提供了出色的性能。随着深度学习模型变得越来越大,像 Optimum Quanto 这样的工具将在提高模型效率和可部署性方面发挥越来越重要的作用。

无论您是研究人员、开发者还是机器学习工程师,Optimum Quanto 都为您提供了一个值得探索的强大工具,可以帮助您更好地优化和部署 PyTorch 模型。随着该项目的不断发展,我们可以期待看到更多令人兴奋的特性和改进,进一步推动深度学习模型的效率和可用性。

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多