Optimum Quanto: 为 PyTorch 模型提供高效量化的强大工具

RayRay
Optimum Quanto量化PyTorch机器学习模型优化Github开源项目

Optimum Quanto: 为 PyTorch 模型提供高效量化的强大工具

在深度学习领域,模型量化是一项重要的技术,可以显著减少模型的计算和内存开销,从而提高推理效率并便于部署。Hugging Face 最近推出的 Optimum Quanto 是一个专为 PyTorch 模型设计的量化后端,为研究人员和开发者提供了一套强大而灵活的工具,可以轻松地对各种深度学习模型进行量化。

Optimum Quanto 的主要特性

Optimum Quanto 具有以下几个突出的特点:

  1. 易用性强: 所有功能都可在 eager 模式下使用,无需对模型进行跟踪。
  2. 设备兼容性好: 量化后的模型可以在任何设备上运行,包括 CUDA 和 MPS。
  3. 自动化程度高: 自动插入量化和反量化桩,自动插入量化的函数操作和模块。
  4. 工作流程完整: 提供从浮点模型到动态量化再到静态量化模型的无缝工作流。
  5. 序列化兼容性: 与 PyTorch 的 weight_only 和 Hugging Face 的 safetensors 兼容。
  6. 硬件加速: 在 CUDA 设备上提供加速的矩阵乘法(如 int8-int8, fp16-int4 等)。
  7. 支持多种量化精度: 支持 int2、int4、int8 和 float8 权重,以及 int8 和 float8 激活。

Optimum Quanto架构图

Optimum Quanto 的性能表现

Optimum Quanto 在保持模型精度的同时,可以显著降低模型的内存占用和推理延迟。以 meta-llama/Meta-Llama-3.1-8B 模型为例:

  1. 精度: 使用 int8/float8 权重和 float8 激活的量化模型,其性能与全精度模型非常接近。
  2. 延迟: 在有优化内核的情况下,仅量化模型权重时,量化模型的推理速度与全精度模型相当。
  3. 设备内存: 内存占用大约减少了 float 位数 / 整数位数倍。

Meta-Llama-3.1-8B模型性能对比

使用 Optimum Quanto 进行模型量化

Optimum Quanto 提供了简单直观的 API,使用户可以轻松地对 Hugging Face 模型进行量化。以下是一个基本的量化工作流程:

  1. 安装 Optimum Quanto:
pip install optimum-quanto
  1. 量化模型:
from transformers import AutoModelForCausalLM from optimum.quanto import QuantizedModelForCausalLM, qint4 model = AutoModelForCausalLM.from_pretrained('meta-llama/Meta-Llama-3-8B') qmodel = QuantizedModelForCausalLM.quantize(model, weights=qint4, exclude='lm_head')
  1. 保存量化后的模型:
qmodel.save_pretrained('./Llama-3-8B-quantized')
  1. 加载量化后的模型:
from optimum.quanto import QuantizedModelForCausalLM qmodel = QuantizedModelForCausalLM.from_pretrained('Llama-3-8B-quantized')

除了对语言模型的支持,Optimum Quanto 还可以用于量化 Diffusers 模型中的子模型,为各种深度学习任务提供全面的量化支持。

Optimum Quanto 的设计理念

Optimum Quanto 的核心是一个 Tensor 子类,它负责:

  1. 将源 Tensor 投影到给定目标类型的最佳范围内。
  2. 将投影后的值映射到目标类型。

这种设计允许 Quanto 在保持精度的同时,最大限度地减少饱和值和被置零值的数量。对于 int8 和 float8,投影是按张量或按通道对称的;对于更低的位宽,则采用分组仿射(带有偏移或"零点")的方式。

在模块层面,Quanto 提供了一种通用机制,可以将 torch 模块替换为能够处理 quanto 张量的 optimum-quanto 模块。这些模块在模型被冻结之前动态转换其权重,虽然会稍微减慢推理速度,但允许模型进行微调。

结语

Optimum Quanto 为 PyTorch 模型量化提供了一个强大而灵活的解决方案。它不仅简化了量化过程,还在各种设备上提供了出色的性能。随着深度学习模型变得越来越大,像 Optimum Quanto 这样的工具将在提高模型效率和可部署性方面发挥越来越重要的作用。

无论您是研究人员、开发者还是机器学习工程师,Optimum Quanto 都为您提供了一个值得探索的强大工具,可以帮助您更好地优化和部署 PyTorch 模型。随着该项目的不断发展,我们可以期待看到更多令人兴奋的特性和改进,进一步推动深度学习模型的效率和可用性。

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多