OpenPrompt: 一个开源的提示学习框架

RayRay
Prompt-learningNLPPre-trained Language ModelsPythonGithub开源项目OpenPrompt

OpenPrompt

OpenPrompt:开启提示学习新范式

在自然语言处理(NLP)领域,如何有效地利用预训练语言模型(PLMs)来解决下游任务一直是研究的热点。近年来,提示学习(Prompt-learning)作为一种新兴的范式,受到了学术界和工业界的广泛关注。OpenPrompt作为一个开源的提示学习框架,为研究人员和开发者提供了一个标准化、灵活且可扩展的工具,以便更好地探索和应用这一新范式。

什么是提示学习?

提示学习是一种将下游NLP任务转化为预训练任务形式的方法。它通过设计文本模板来修改输入,直接利用PLMs进行预训练任务,从而适应各种下游应用。与传统的微调方法相比,提示学习能够更好地发挥PLMs的潜力,在许多任务上取得了显著的性能提升。

OpenPrompt的核心特性

OpenPrompt框架的设计理念是模块化、灵活性和可扩展性。它主要包含以下核心组件:

  1. PLM加载器: 支持直接从Hugging Face加载各种预训练语言模型。

  2. 模板(Template): 用于包装原始输入文本的类,是提示学习中最重要的模块之一。

  3. 词汇器(Verbalizer): 构建标签和目标词之间映射关系的类。

  4. PromptModel: 将PLM、Template和Verbalizer组合在一起的对象,用于实际的训练和推理。

这种模块化的设计使得研究人员可以轻松地组合不同的PLMs、任务格式和提示模块,以探索各种提示学习方法。

使用OpenPrompt的优势

  1. 标准化实现: OpenPrompt提供了当前主流提示学习方法的标准化实现,包括模板化、词汇化和优化策略。这使得研究人员可以轻松调用和理解这些方法。

  2. 灵活性: 框架的模块化设计允许用户自由组合不同的组件,以适应各种NLP任务和研究需求。

  3. 可扩展性: OpenPrompt的架构支持用户快速实践自己的提示学习想法,为创新研究提供了便利。

  4. 丰富的教程和文档: 项目提供了详细的教程脚本和文档,帮助用户快速上手和深入理解框架的使用。

OpenPrompt的实际应用

让我们通过一个简单的情感分析示例来了解OpenPrompt的使用流程:

  1. 定义任务:

    from openprompt.data_utils import InputExample classes = ["negative", "positive"] dataset = [ InputExample(guid=0, text_a="Albert Einstein was one of the greatest intellects of his time."), InputExample(guid=1, text_a="The film was badly made.") ]
  2. 加载预训练语言模型:

    from openprompt.plms import load_plm plm, tokenizer, model_config, WrapperClass = load_plm("bert", "bert-base-cased")
  3. 定义模板:

    from openprompt.prompts import ManualTemplate promptTemplate = ManualTemplate( text = '{"placeholder":"text_a"} It was {"mask"}', tokenizer = tokenizer, )
  4. 定义词汇器:

    from openprompt.prompts import ManualVerbalizer promptVerbalizer = ManualVerbalizer( classes = classes, label_words = { "negative": ["bad"], "positive": ["good", "wonderful", "great"], }, tokenizer = tokenizer, )
  5. 组合PromptModel:

    from openprompt import PromptForClassification promptModel = PromptForClassification( template = promptTemplate, plm = plm, verbalizer = promptVerbalizer, )
  6. 定义数据加载器:

    from openprompt import PromptDataLoader data_loader = PromptDataLoader( dataset = dataset, tokenizer = tokenizer, template = promptTemplate, tokenizer_wrapper_class=WrapperClass, )
  7. 进行推理:

    import torch promptModel.eval() with torch.no_grad(): for batch in data_loader: logits = promptModel(batch) preds = torch.argmax(logits, dim = -1) print(classes[preds])

这个例子展示了如何使用OpenPrompt进行零样本情感分析。通过简单的几个步骤,我们就能利用预训练的BERT模型来完成任务,而无需进行额外的微调。

OpenPrompt的最新进展

OpenPrompt团队一直在积极更新和改进框架。以下是一些最新的进展:

  1. 支持构建聊天AI: 结合UltraChat项目,OpenPrompt现在可以用于进行监督指令调优。

  2. 支持更多模型: 如ERNIE 1.0和OPT等。

  3. 性能报告: 团队正在努力测试不同方法的性能,并将结果更新到项目仓库中。

  4. 获得ACL 2022最佳演示论文奖: 这证明了OpenPrompt在学术界的影响力和认可度。

未来展望

随着NLP技术的不断发展,提示学习作为一种新范式,还有很大的探索空间。OpenPrompt作为一个开源框架,为研究人员提供了一个强大的工具,以推动这一领域的进步。未来,我们可以期待:

  1. 更多预训练模型的支持
  2. 更高效的提示学习算法
  3. 针对特定领域和任务的优化
  4. 与其他NLP技术的融合,如少样本学习、迁移学习等

OpenPrompt不仅是一个技术框架,更是一个开放的研究平台。它鼓励研究者们分享他们的发现和创新,推动整个NLP社区的进步。通过使用OpenPrompt,研究人员可以更容易地复现已有的工作,比较不同方法的性能,并在此基础上开发新的算法。

结语

OpenPrompt作为一个开源的提示学习框架,为NLP研究和应用提供了一个强大而灵活的工具。它不仅简化了提示学习的实现过程,还为创新研究提供了广阔的空间。随着更多研究者和开发者的加入,OpenPrompt有望成为推动提示学习发展的重要平台,为NLP领域带来更多突破性的进展。

无论您是研究人员、学生还是工业界的开发者,OpenPrompt都为您提供了探索提示学习这一激动人心的新范式的机会。通过使用OpenPrompt,您可以更好地理解和应用提示学习技术,为您的NLP项目带来新的可能性。

让我们一起期待OpenPrompt和提示学习的美好未来!

如果您在研究中使用了OpenPrompt,请引用以下论文:

@article{ding2021openprompt,
  title={OpenPrompt: An Open-source Framework for Prompt-learning},
  author={Ding, Ning and Hu, Shengding and Zhao, Weilin and Chen, Yulin and Liu, Zhiyuan and Zheng, Hai-Tao and Sun, Maosong},
  journal={arXiv preprint arXiv:2111.01998},
  year={2021}
}

OpenPrompt是一个开源项目,欢迎更多的贡献者加入,一起推动提示学习的发展!

了解更多关于OpenPrompt的信息

编辑推荐精选

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

下拉加载更多