在机器学习和计算机视觉领域,度量学习(Metric Learning)是一个极具挑战性的任务。它旨在学习一个能够将数据映射到特征空间的模型,使得相似的样本在该空间中距离较近,而不相似的样本距离较远。这种技术在图像检索、人脸识别、行人重识别等多个应用场景中都有着广泛的应用。然而,实现高质量的度量学习模型并非易事,它需要复杂的训练策略、精心设计的损失函数以及有效的验证方法。
为了解决这些挑战,一个名为OpenMetricLearning(简称OML)的开源框架应运而生。OML是一个基于PyTorch的Python框架,专门用于训练和验证能够生成高质量嵌入的深度学习模型。它不仅提供了丰富的工具和功能,还大大简化了度量学习模型的开发和部署过程。让我们深入了解OML的特性和优势。
OML提供了一套完整的工具,包括各种损失函数、采样器、挖掘器等。这些工具都经过精心设计和优化,能够满足不同场景下的度量学习需求。例如,它支持TripletLoss、ArcFaceLoss等常用损失函数,以及AllTripletsMiner、HardTripletsMiner等高效的样本挖掘策略。
OML维护了一个预训练模型库(Zoo),包含了在多个流行数据集上训练的高性能模型。用户可以直接使用这些模型进行特征提取或迁移学习,大大减少了从头训练模型的时间和计算资源消耗。
OML采用基于配置文件的实验管理方式。用户只需修改配置文件,就可 以轻松调整模型架构、训练参数等各项设置,无需改动代码。这种方式极大地提高了实验的可重复性和可管理性。
除了模型训练,OML还提供了丰富的后处理功能。例如,它支持自适应阈值、对检索结果进行重排序等技术,可以进一步提升模型在实际应用中的性能。
虽然OML最初主要面向图像领域,但它也在不断扩展对其他模态的支持。目前,OML已经可以处理文本数据,并计划在未来增加对音频等更多模态的支持。
OML可以无缝集成PyTorch Lightning等流行的深度学习框架。这使得用户可以利用这些框架提供的高级功能,如分布式训练、自动混合精度等,进一步提升训练效率。
OML的设计理念之一就是降低度量学习的入门门槛。通过提供直观的API和详细的文档,即使是对度量学习不太熟悉的开发者也能快速上手。
得益于其丰富的工具集和预训练模型,使用OML可以显著提高开发效率。开发者不需要重复造轮子,可以将精力集中在解决具体问题上。
OML中的许多组件都经过精心调优,在多个benchmark上达到了与当前最先进方法相当的性能。这为用户提供了一个高起点,有助于开发出高质量的度量学习模型。
虽然OML提供了许多现成的组件,但它也保持了很高的灵活性。用户可以轻松地集成自定义的损失函数、采样策略等,以满足特定的需求。
作为一个开源项目,OML拥有一个活跃的社区。用户可以从社区获得支持、贡献代 码,或者分享自己的经验。这种协作模式有助于框架的持续改进和发展。
为了更直观地展示OML的使用方法和效果,让我们看一个简单的图像检索示例:
from torch.optim import Adam from torch.utils.data import DataLoader from oml import datasets as d from oml.inference import inference from oml.losses import TripletLossWithMiner from oml.metrics import calc_retrieval_metrics_rr from oml.miners import AllTripletsMiner from oml.models import ViTExtractor from oml.registry import get_transforms_for_pretrained from oml.retrieval import RetrievalResults, AdaptiveThresholding from oml.samplers import BalanceSampler from oml.utils import get_mock_images_dataset # 加载预训练模型 model = ViTExtractor.from_pretrained("vits16_dino").to("cpu").train() transform, _ = get_transforms_for_pretrained("vits16_dino") # 准备 数据集 df_train, df_val = get_mock_images_dataset(global_paths=True) train = d.ImageLabeledDataset(df_train, transform=transform) val = d.ImageQueryGalleryLabeledDataset(df_val, transform=transform) # 设置优化器和损失函数 optimizer = Adam(model.parameters(), lr=1e-4) criterion = TripletLossWithMiner(0.1, AllTripletsMiner(), need_logs=True) sampler = BalanceSampler(train.get_labels(), n_labels=2, n_instances=2) # 训练函数 def training(): for batch in DataLoader(train, batch_sampler=sampler): embeddings = model(batch["input_tensors"]) loss = criterion(embeddings, batch["labels"]) loss.backward() optimizer.step() optimizer.zero_grad() print(criterion.last_logs) # 验证函数 def validation(): embeddings = inference(model, val, batch_size=4, num_workers=0) rr = RetrievalResults.from_embeddings(embeddings, val, n_items=3) rr = AdaptiveThresholding(n_std=2).process(rr) rr.visualize(query_ids=[2, 1], dataset=val, show=True) print(calc_retrieval_metrics_rr(rr, map_top_k=(3,), cmc_top_k=(1,))) # 执行训练和验证 training() validation()
在这个例子中,我们使用OML提供的预训练ViT模型作为特征提取器,并 使用TripletLoss进行训练。通过OML的采样器和挖掘器,我们可以高效地构建训练批次和选择有意义的三元组。在验证阶段,我们使用OML的推理和评估工具来计算检索指标并可视化结果。
这个简单的示例展示了OML的核心功能,包括模型加载、数据处理、训练循环、验证和可视化。在实际项目中,OML可以处理更复杂的场景和更大规模的数据集。
OML团队正在持续改进和扩展这个框架。未来的发展方向包括:
支持更多模态:计划增加对音频、视频等更多数据类型的支持。
集成更多先进算法:持续关注度量学习领域的最新进展,并将新的算法和技术集成到框架中。
提升性能和可扩展性:优化框架的性能,使其能够更好地处理大规模数据集和复杂模型。
增强与其他工具的集成:计划与更多流行的机器学习工具和平台进行集成,提供更丰富的生态系统。
改进文档和教程:不断完善文档,提供更多实用的教程和最佳实践指南,帮助用户更好地利用OML。
OpenMetricLearning为度量学习领域带来了一个强大而灵活的工具。无论是研究人员还是工程师,都可以通过OML更轻松地开发和部署高质量的度量学习模型。随着AI技术的不断发展,像OML这样的开源框架将在推动技术创新和应用落地方面发挥越来越重要的作用。
对于那些对度量学习感兴趣或者正在寻找解决方案的开发者来说,OML无疑是一个值得尝试的选择。它不仅可以帮助你快速入门,还能在实际项目中提供强有力的支持。随着社区的不断壮大和框架的持续改进,我们有理由相信,OML将在度量学习领域占据越来越重要的地位。
如果你对OML感兴趣,可以访问其GitHub仓库了解更多信息,或者查阅其官方文档获取详细的使用指南。无论你是初学者还是有经验的开发者,OML都能为你的度量学习项目提供有力的支持。让我们一起期待OML在未来带来更多惊喜和创新!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。
像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。