Open Graph Benchmark (OGB): 图机器学习的开源基准数据集

RayRay
Open Graph Benchmark图机器学习数据加载器深度学习框架评估器Github开源项目

ogb

Open Graph Benchmark: 推动图机器学习发展的开源基准

随着人工智能和机器学习技术的快速发展,图数据结构在众多领域中的应用价值日益凸显。然而,图数据的复杂性和多样性给机器学习模型的开发和评估带来了巨大挑战。为了解决这一问题,斯坦福大学的研究人员开发了Open Graph Benchmark (OGB),这是一个面向图机器学习的开源基准数据集集合。OGB旨在为研究人员和开发者提供标准化的数据集、工具和评估方法,从而推动图机器学习领域的发展。

OGB的核心特性

OGB的设计理念围绕三个核心特性展开:

  1. 多样化的数据集:OGB提供了涵盖多个领域的真实大规模图数据集,包括社交网络、生物信息学、知识图谱等。这些数据集涵盖了节点分类、链接预测和图分类等主要任务类型。

  2. 易用的数据加载器:OGB提供了与PyTorch Geometric和Deep Graph Library (DGL)等主流图深度学习框架兼容的数据加载器。这些加载器可以自动下载和处理数据集,大大简化了研究人员的工作流程。

  3. 标准化的评估流程:OGB为每个数据集提供了标准化的评估器,确保不同方法之间的公平比较。这种统一的评估方法有助于研究人员准确衡量他们的模型性能。

OGB概览

数据集概览

OGB的数据集涵盖了三个主要的图机器学习任务类别:

  1. 节点属性预测:预测图中个别节点的属性。
  2. 链接属性预测:预测图中节点对之间的关系。
  3. 图属性预测:预测整个图的属性。

这些数据集来源于多个领域,包括:

  • 生物网络
  • 分子图
  • 学术网络
  • 知识图谱

OGB的数据集在规模上也有很大差异,从可以在单个GPU上处理的小规模图,到需要多个GPU或复杂的分布式计算技术才能处理的大规模图,应有尽有。这种多样性使得研究人员可以全面评估他们的模型在不同场景下的性能。

数据集概览

使用OGB

使用OGB非常简单,只需几行代码就可以下载、处理和加载数据集。以下是一个使用PyTorch Geometric加载OGB数据集的示例:

from ogb.graphproppred import PygGraphPropPredDataset from torch_geometric.loader import DataLoader # 下载并处理数据集 dataset = PygGraphPropPredDataset(name = 'ogbg-molhiv') split_idx = dataset.get_idx_split() train_loader = DataLoader(dataset[split_idx['train']], batch_size=32, shuffle=True) valid_loader = DataLoader(dataset[split_idx['valid']], batch_size=32, shuffle=False) test_loader = DataLoader(dataset[split_idx['test']], batch_size=32, shuffle=False)

OGB还提供了标准化的评估器,使得模型性能的评估变得简单而统一:

from ogb.graphproppred import Evaluator evaluator = Evaluator(name = 'ogbg-molhiv') input_dict = {'y_true': y_true, 'y_pred': y_pred} result_dict = evaluator.eval(input_dict) # 例如, {'rocauc': 0.7321}

OGB的影响与未来

自推出以来,OGB已经在图机器学习社区中产生了重大影响。它不仅为研究人员提供了标准化的基准,还促进了新算法和模型的开发。通过OGB的leaderboards,研究人员可以直接比较他们的方法与最先进的技术,这大大加速了领域的进步。

OGB是一个持续发展的社区驱动项目。研究团队欢迎来自社区的贡献,包括新的数据集和改进建议。随着图机器学习领域的不断发展,OGB也在不断扩展和完善,以满足研究人员和实践者的需求。

最近,OGB团队还推出了OGB-LSC(Large Scale Challenge),这是一个专注于大规模图学习的挑战。OGB-LSC旨在推动研究人员开发能够处理极大规模图数据的算法和系统,进一步扩展了OGB的影响力。

结语

Open Graph Benchmark为图机器学习领域提供了一个强大而灵活的基准平台。通过提供多样化的数据集、易用的工具和标准化的评估方法,OGB正在推动这一领域的快速发展。无论您是研究人员、学生还是行业从业者,OGB都为您提供了探索和推进图机器学习前沿的绝佳机会。

随着图数据在诸如社交网络分析、生物信息学、推荐系统等领域的应用日益广泛,OGB的重要性只会与日俱增。通过持续的社区贡献和项目改进,OGB有望在未来继续引领图机器学习的发展方向,为这一充满活力的研究领域注入新的动力。

编辑推荐精选

扣��子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多