Objectron数据集:推动3D物体检测研究的大规模视频数据集

RayRay
Objectron3D物体检测视频数据集人工智能MediaPipeGithub开源项目

Objectron数据集:推动3D物体检测研究的大规模视频数据集

近年来,3D物体检测和姿态估计在计算机视觉领域受到了越来越多的关注。然而,由于缺乏大规模的真实世界3D数据集,这一领域的研究进展一直受到限制。为了解决这一问题,Google Research推出了Objectron数据集,这是一个包含短视频片段的大规模数据集,旨在推动3D物体检测和姿态估计研究的发展。

数据集概述

Objectron数据集是一个包含15,000个短视频片段和400万张标注图像的大规模数据集。每个视频片段都以物体为中心,展示了摄像机围绕物体移动并从不同角度捕捉它的过程。数据集涵盖了9个日常物品类别:自行车、书籍、瓶子、相机、麦片盒、椅子、杯子、笔记本电脑和鞋子。为了确保地理多样性,数据集的采集覆盖了5个大洲的10个国家。

Objectron数据集示例

丰富的3D标注信息

Objectron数据集的一个重要特点是它提供了丰富的3D标注信息。每个视频片段都附带了AR会话元数据,包括:

  • 摄像机姿态
  • 稀疏点云
  • 周围环境的平面特征

此外,数据集还包含了每个物体的手动标注3D边界框,描述了物体的位置、方向和尺寸。这些详细的3D标注为研究人员提供了宝贵的ground truth数据,可用于训练和评估3D物体检测和姿态估计模型。

数据集特点

  1. 大规模数据: 15,000个标注视频片段和400万张标注图像。
  2. 多样化的物体类别: 涵盖9个日常物品类别。
  3. 丰富的元数据: 包括高分辨率图像、物体姿态、摄像机姿态、点云和表面平面信息。
  4. 多视角观察: 每个物体从不同角度进行拍摄,提供了全面的3D信息。
  5. 地理多样性: 数据采集覆盖5个大洲的10个国家。
  6. 准确的评估指标: 提供了针对有向3D边界框的3D IoU评估指标。
  7. 易于使用: 提供了各种tf.record格式的数据,可直接用于TensorFlow/PyTorch等深度学习框架。

数据格式和访问

Objectron数据集存储在Google Cloud Storage的objectron bucket中。研究人员可以通过以下方式访问数据集:

  1. 视频序列文件
  2. 3D边界框标注文件
  3. AR元数据文件
  4. 处理后的tf.records格式数据
  5. 支持脚本和工具

数据集的原始大小为1.9TB(包括视频和标注),总大小为4.4TB(包括视频、records、sequences等)。研究人员可以根据需要下载所需的部分数据。

3D物体检测解决方案

除了数据集本身,Google Research还基于Objectron数据集训练了一个3D物体检测解决方案,可以检测四类物体:鞋子、椅子、杯子和相机。这个解决方案已经在Google的开源框架MediaPipe中发布,为研究人员和开发者提供了一个现成的基线模型。

3D物体检测示例

这个3D物体检测解决方案采用了两阶段架构:

  1. 第一阶段使用TensorFlow Object Detection模型找到物体的2D裁剪区域。
  2. 第二阶段使用图像裁剪来估计3D边界框,同时计算下一帧的2D裁剪区域。

这种设计使得物体检测器不需要在每一帧上运行,从而提高了效率。第二阶段的3D边界框预测器在Adreno 650移动GPU上可以达到83 FPS的运行速度。

评估指标

为了评估3D物体检测模型的性能,Objectron数据集提供了一个基于3D交并比(IoU)的评估指标。这个指标可以准确测量预测的3D边界框与ground truth之间的相似度。研究人员可以使用提供的评估脚本来计算他们的模型性能。

应用前景

Objectron数据集的发布为3D物体检测和姿态估计研究开辟了新的可能性。它可以推动多个相关领域的发展,包括但不限于:

  1. 增强现实(AR): 更准确的3D物体检测可以提升AR应用的交互体验。
  2. 机器人技术: 帮助机器人更好地理解和操作3D环境中的物体。
  3. 自动驾驶: 提高车辆对周围3D环境的感知能力。
  4. 计算机视觉: 推动视图合成、3D表示学习等研究方向的发展。

使用教程

为了帮助研究人员快速上手使用Objectron数据集,Google Research提供了一系列详细的教程:

  1. 下载数据集
  2. TensorFlow加载示例
  3. PyTorch数据加载
  4. 解析原始标注文件
  5. 解析AR元数据
  6. 使用3D IoU评估模型性能
  7. SequenceExample教程
  8. 训练NeRF模型

这些教程涵盖了从数据下载到模型训练的各个方面,为研究人员提供了全面的指导。

开源许可

Objectron数据集采用Computational Use of Data Agreement 1.0 (C-UDA-1.0)许可发布。这个许可允许研究人员自由使用数据集进行学术研究和非商业用途。

结语

Objectron数据集的发布标志着3D物体检测和姿态估计研究进入了一个新的阶段。这个大规模、高质量的数据集为研究人员提供了宝贵的资源,有望推动计算机视觉领域的快速发展。随着越来越多的研究人员开始使用Objectron数据集,我们可以期待看到更多创新的3D物体检测算法和应用的出现。

对于有兴趣深入研究Objectron数据集的研究人员,可以访问项目GitHub页面获取更多信息,或者加入Objectron邮件列表与其他研究者交流讨论。随着3D视觉技术的不断进步,Objectron数据集无疑将在推动这一领域的发展中发挥重要作用。

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
OmniParser

OmniParser

帮助AI理解电脑屏幕 纯视觉GUI元素的自动化解析方案

开源工具通过计算机视觉技术实现图形界面元素的智能识别与结构化处理,支持自动化测试脚本生成和辅助功能开发。项目采用模块化设计,提供API接口与多种输出格式,适用于跨平台应用场景。核心算法优化了元素定位精度,在动态界面和复杂布局场景下保持稳定解析能力。

Github开源项目OmniParser界面解析交互区域检测
Grok3

Grok3

埃隆·马斯克旗下的人工智能公司 xAI 推出的第三代大规模语言模型

Grok3 是由埃隆·马斯克旗下的人工智能公司 xAI 推出的第三代大规模语言模型,常被马斯克称为“地球上最聪明的 AI”。它不仅是在前代产品 Grok 1 和 Grok 2 基础上的一次飞跃,还在多个关键技术上实现了创新突破。

腾讯元��宝

腾讯元宝

腾讯自研的混元大模型AI助手

腾讯元宝是腾讯基于自研的混元大模型推出的一款多功能AI应用,旨在通过人工智能技术提升用户在写作、绘画、翻译、编程、搜索、阅读总结等多个领域的工作与生活效率。

AI助手热门AI工具AI对话腾讯元宝智能体 AI 办公助手
Windsurf Wave 3

Windsurf Wave 3

Windsurf Editor推出第三次重大更新Wave 3

新增模型上下文协议支持与智能编辑功能。本次更新包含五项核心改进:支持接入MCP协议扩展工具生态,Tab键智能跳转提升编码效率,Turbo模式实现自动化终端操作,图片拖拽功能优化多模态交互,以及面向付费用户的个性化图标定制。系统同步集成DeepSeek、Gemini等新模型,并通过信用点数机制实现差异化的资源调配。

AI IDE
Cursor

Cursor

增强编程效率的AI代码编辑器

Cursor作为AI驱动的代码编辑工具,助力开发者效率大幅度提升。该工具简化了扩展、主题和键位配置的导入,可靠的隐私保护措施保证代码安全,深受全球开发者信赖。此外,Cursor持续推出更新,不断优化功能和用户体验。

AI工具AI开发辅助编程CursorAI代码编辑器
Manus

Manus

全面超越基准的 AI Agent助手

Manus 是一款通用人工智能代理平台,能够将您的创意和想法迅速转化为实际成果。无论是定制旅行规划、深入的数据分析,还是教育支持与商业决策,Manus 都能高效整合信息,提供精准解决方案。它以直观的交互体验和领先的技术,为用户开启了一个智慧驱动、轻松高效的新时代,让每个灵感都能得到完美落地。

飞书知识问答

飞书知识问答

飞书官方推出的AI知识库 上传word pdf即可部署AI私有知识库

基于DeepSeek R1大模型构建的知识管理系统,支持PDF、Word、PPT等常见文档格式解析,实现云端与本地数据的双向同步。系统具备实时网络检索能力,可自动关联外部信息源,通过语义理解技术处理结构化与非结构化数据。免费版本提供基础知识库搭建功能,适用于企业文档管理和个人学习资料整理场景。

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
DeepEP

DeepEP

DeepSeek开源的专家并行通信优化框架

DeepEP是一个专为大规模分布式计算设计的通信库,重点解决专家并行模式中的通信瓶颈问题。其核心架构采用分层拓扑感知技术,能够自动识别节点间物理连接关系,优化数据传输路径。通过实现动态路由选择与负载均衡机制,系统在千卡级计算集群中维持稳定的低延迟特性,同时兼容主流深度学习框架的通信接口。

下拉加载更多