NATTEN: 为邻域带来注意力的高效神经网络扩展

RayRay
NATTENNeighborhood Attention自注意力机制深度学习计算机视觉Github开源项目

NATTEN简介

NATTEN(Neighborhood Attention Extension)是一个为PyTorch提供快速滑动窗口注意力机制实现的开源项目。它的核心是邻域注意力(Neighborhood Attention),这是一种局部化的自注意力机制,可以在保持高效计算的同时捕获图像的局部上下文信息。

NATTEN的诞生源于研究人员对滑动窗口自注意力机制的长期关注。尽管这类方法在理论上很有效,但由于实现困难,它们一直被相对忽视。例如,早期提出这种方法的SASA论文就指出,虽然这些方法理论上很高效,但在实践中相对于卷积操作来说速度较慢。NATTEN的出现改变了这一局面,它为滑动窗口注意力机制提供了高效的实现,使其在实际应用中变得可行和有竞争力。

NATTEN Logo

NATTEN的核心特性

NATTEN的主要特性包括:

  1. 快速实现: NATTEN提供了邻域注意力机制的高效CUDA内核实现,大大提高了计算速度。

  2. 多维支持: 支持1D、2D和3D数据的邻域注意力计算。

  3. 灵活性: 提供了多种后端实现,包括naive、GEMM和FNA(Fused Neighborhood Attention)。

  4. 兼容性: 支持PyTorch 2.0及以上版本,适配Python 3.8及以上版本。

  5. 丰富的功能: 支持因果掩码、可变参数、相对位置偏置等高级功能。

NATTEN的技术创新

NATTEN的一个重要创新是引入了融合邻域注意力(Fused Neighborhood Attention, FNA)。FNA可以看作是将Flash Attention和FMHA等方法从背靠背矩阵乘法推广到背靠背张量-张量收缩的一般化,并内置了邻域注意力掩码。这种方法通过避免将注意力张量存储到全局内存,不仅减少了全局内存占用,还缓解了内存带宽瓶颈,从而显著加速了邻域注意力的计算。

FNA性能提升图

NATTEN的应用场景

NATTEN为构建强大的分层视觉Transformer模型提供了基础。它可以应用于各种计算机视觉任务,如:

  1. 图像分类
  2. 目标检测
  3. 语义分割
  4. 图像生成
  5. 视频理解

通过使用NATTEN,研究人员和开发者可以更容易地在这些任务中探索和利用局部化注意力机制的优势。

NATTEN的使用指南

要开始使用NATTEN,首先需要安装它。NATTEN支持通过pip安装:

pip install natten

安装完成后,可以轻松地在PyTorch项目中使用NATTEN提供的邻域注意力模块:

from natten import NeighborhoodAttention1D from natten import NeighborhoodAttention2D na1d = NeighborhoodAttention1D(dim=128, kernel_size=7, dilation=2, num_heads=4) na2d = NeighborhoodAttention2D(dim=128, kernel_size=7, dilation=2, num_heads=4)

NATTEN还提供了专门的FLOP计数器,方便用户评估模型的计算复杂度:

from natten.flops import get_flops flops = get_flops(model, input)

NATTEN的性能优势

NATTEN的性能优势主要体现在其高效的CUDA实现上。特别是新引入的FNA(Fused Neighborhood Attention)操作,在多个维度上都带来了显著的性能提升:

  1. 速度: FNA通过避免中间结果的全局内存存储,大大减少了内存访问,从而提高了计算速度。

  2. 内存效率: 由于不需要存储完整的注意力矩阵,FNA显著降低了内存占用。

  3. 功能完整性: FNA支持因果掩码和可变参数等高级功能,使其在各种应用场景中都能保持高效。

  4. 硬件兼容性: FNA支持从SM50(Maxwell)到最新的GPU架构,覆盖了广泛的硬件平台。

这些优势使NATTEN成为构建高效视觉Transformer模型的理想工具。

NATTEN的未来发展

NATTEN团队持续致力于改进和扩展项目的功能。未来的发展方向可能包括:

  1. 进一步优化FNA性能
  2. 扩展到更多的问题空间和数据类型
  3. 提供更多的预训练模型和应用示例
  4. 增强与其他深度学习框架的集成

结语

NATTEN为滑动窗口注意力机制带来了革命性的实现,使其在实际应用中变得高效可行。通过提供快速、灵活且易于使用的邻域注意力实现,NATTEN为计算机视觉领域的研究和应用开辟了新的可能性。无论是研究人员还是工程师,都可以利用NATTEN来构建更强大、更高效的视觉AI模型,推动计算机视觉技术的进步。

如果您对NATTEN感兴趣,可以访问其GitHub仓库了解更多信息,或者查阅官方文档获取详细的使用指南。NATTEN的开源性质也欢迎社区贡献,共同推动这一创新技术的发展。

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多