mlforecast是一个用于时间序列预测的开源机器学习框架,旨在提供快速、准确和可扩展的预测能力。它由Nixtla团队开发,并在GitHub上开源发布。mlforecast的主要目标是简化使用机器学习模型进行时间序列预测的流程,让数据科学家和机器学习工程师能够专注于模型选择和特征设计,而无需过多关注复杂的实现细节。
mlforecast具有以下几个突出的特性:
高效的特征工程:提供了最快速的时间序列特征工程实现,大大提高了模型训练效率。
多种数据格式支持:可以无缝兼容pandas、polars、Spark、Dask和Ray等多种数据处理库。
概率预测:通过Conformal Prediction方法实现可靠的概率预测。
外部变量支持:支持使用外部变量和静态协变量进行建模。
熟悉的API:采用类似scikit-learn的API设计,使用.fit()
和.predict()
方法进行模型训练和预测。
分布式训练:可以利用Dask、Ray或Spark集群进行大规模分布式模型训练。
mlforecast可以通过pip或conda进行安装:
# 使用pip安装 pip install mlforecast # 使用conda安装 conda install -c conda-forge mlforecast
以下是使用mlforecast进行时间序列预测的基本流程:
数据准备:将时间序列数据存储在pandas DataFrame中,包含unique_id、ds(时间戳)和y(目标值)列。
模型定义:选择任何符合scikit-learn API的回归模型。
创建MLForecast对象:指定模型、频率、滞后特征、日期特征等。
模型训练:调用fit()
方法进行特征工程和模型训练。
预测:使用predict()
方法生成未来n步的预测结果。
下面是一个简单的示例代码:
from mlforecast import MLForecast from mlforecast.lag_transforms import ExpandingMean from mlforecast.target_transforms import Differences import lightgbm as lgb # 创建MLForecast对象 fcst = MLForecast( models=[lgb.LGBMRegressor()], freq='D', lags=[7, 14], lag_transforms={ 1: [ExpandingMean()] }, date_features=['dayofweek'], target_transforms=[Differences([1])] ) # 训练模型 fcst.fit(df) # 预测未来14天 predictions = fcst.predict(14)
除了基本的预测功能,mlforecast还提供了许多进阶特性:
交叉验证:使用cross_validation()
方法进行稳健的模型性能评估。
概率预测:通过设置预测区间配置,生成置信区间预测。
迁移学习:使用一组时间序列预训练模型,然后用于预测新的时间序列。
分布式训练:利用Dask、Ray或Spark集群进行大规模模型训练。
自定义特征工程:支持用户自定义滞后变换和目标变换函数。
传统的时间序列预测方法(如ARIMA和ETS)在处理大规模、高频率的时间序列数据时面临挑战。mlforecast通过利用机器学习模型的优势,提供了一种可扩展的解决方案。它能够同时建模多个时间序列,捕捉共同模式,并且在计算效率和预测准确性方面都有出色表现。
对于数据科学家和机器学习工程师来说,mlforecast提供了一个强大而灵活的工具,可以快速实验不同的模型和特征组合,同时避免陷入复杂的实现细节。无论是处理单个时间序列还是成千上万的并行序列,mlforecast都能提供高效、准确的预测结果。
mlforecast是一个活跃的开源项目,欢迎社区贡献。如果你在使用过程中遇到问题或有新的功能建议,可以在GitHub仓库提出issue或加入Slack社区讨论。项目文档提供了详细的使用指南和API参考,还有多个实际应用的示例notebooks可供参考。
通过使用mlforecast,你可以将时间序列预测任务变得更加简单、高效和可扩展。无论是业务预测、需求规划还是异常检测,mlforecast都能为你的机器学习项目提供强大的支持。
mlforecast为时间序列预测提供了一个现代化的机器学习解决方案。它结合了传统统计方法的可解释性和机器学习模型的预测能力,为数据科学家和机器学习工程师提供了一个强大而灵活的工具。通过简化工作流程、提高计算效率并支持大规模应用,mlforecast正在推动时间序列分析领域向前发展。如果你正在寻找一个可靠、高效且易于使用的时间序列预测框架,mlforecast无疑是一个值得考虑的选择。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大 语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成, 助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号