MEALPY: 最先进的元启发式算法Python库

RayRay
MEALPY元启发式算法优化算法Python库开源软件Github开源项目

MEALPY简介

MEALPY (MEta-heuristic ALgorithms in PYthon) 是一个开源的Python库,包含了大量最先进的元启发式算法。这些算法属于基于种群的算法(PMA),是近似优化领域中最流行的算法。

MEALPY的主要特点包括:

  • 免费开源:采用GNU通用公共许可证(GPL) V3许可
  • 算法丰富:共有215种算法,包括190种官方算法(原始、混合、变体)和25种开发算法
  • 文档完善:提供详细的在线文档
  • 兼容性强:支持Python 3.7及以上版本
  • 依赖简单:仅依赖numpy、scipy、pandas和matplotlib

MEALPY分类

MEALPY的目标

MEALPY的主要目标是:

  1. 免费分享元启发式领域的知识
  2. 帮助各领域的研究人员快速访问优化算法
  3. 实现经典和最新的元启发式算法,涵盖元启发式的整个历史

MEALPY的应用

使用MEALPY,您可以:

  • 分析元启发式算法的参数
  • 对算法进行定性和定量分析
  • 分析算法的收敛速度
  • 测试和分析算法的可扩展性和稳健性
  • 以多种格式(csv、json、pickle、png、pdf、jpeg)保存结果
  • 导出和导入模型
  • 解决各种优化问题

安装和使用

可以通过pip安装MEALPY的稳定版本:

pip install mealpy==3.0.1

安装完成后,可以像导入其他Python模块一样导入MEALPY:

import mealpy print(mealpy.__version__) print(mealpy.get_all_optimizers())

示例

简单的基准函数优化

from mealpy import FloatVar, SMA import numpy as np def objective_function(solution): return np.sum(solution**2) problem = { "obj_func": objective_function, "bounds": FloatVar(lb=(-100.,)*30, ub=(100.,)*30), "minmax": "min", "log_to": None, } model = SMA.OriginalSMA(epoch=100, pop_size=50, pr=0.03) g_best = model.solve(problem) print(f"Best solution: {g_best.solution}, Best fitness: {g_best.target.fitness}")

大规模优化

from mealpy import FloatVar, SHADE import numpy as np def objective_function(solution): return np.sum(solution**2) problem = { "obj_func": objective_function, "bounds": FloatVar(lb=(-1000.,)*10000, ub=(1000.,)*10000), # 10000维 "minmax": "min", "log_to": "console", } optimizer = SHADE.OriginalSHADE(epoch=10000, pop_size=100) g_best = optimizer.solve(problem) print(f"Best solution: {g_best.solution}, Best fitness: {g_best.target.fitness}")

分布式/并行优化

MEALPY支持使用多线程或多进程进行分布式优化:

from mealpy import FloatVar, SMA import numpy as np def objective_function(solution): return np.sum(solution**2) problem = { "obj_func": objective_function, "bounds": FloatVar(lb=(-100.,)*100, ub=(100.,)*100), "minmax": "min", "log_to": "console", } optimizer = SMA.OriginalSMA(epoch=10000, pop_size=100, pr=0.03) # 使用10个线程 optimizer.solve(problem, mode="thread", n_workers=10) print(f"Best solution: {optimizer.g_best.solution}, Best fitness: {optimizer.g_best.target.fitness}") # 使用8个CPU核心 optimizer.solve(problem, mode="process", n_workers=8) print(f"Best solution: {optimizer.g_best.solution}, Best fitness: {optimizer.g_best.target.fitness}")

自定义问题

MEALPY允许用户定义自定义的优化问题。以下是一个优化SVM超参数的例子:

from sklearn.svm import SVC from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn import datasets, metrics from mealpy import FloatVar, StringVar, IntegerVar, BoolVar, MixedSetVar, SMA, Problem # 加载数据集 X, y = datasets.load_breast_cancer(return_X_y=True) # 创建训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y) sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) data = { "X_train": X_train_std, "X_test": X_test_std, "y_train": y_train, "y_test": y_test } class SvmOptimizedProblem(Problem): def __init__(self, bounds=None, minmax="max", data=None, **kwargs): self.data = data super().__init__(bounds, minmax, **kwargs) def obj_func(self, x): x_decoded = self.decode_solution(x) C_paras, kernel_paras = x_decoded["C_paras"], x_decoded["kernel_paras"] degree, gamma, probability = x_decoded["degree_pras"], x_decoded["gamma_paras"], x_decoded["probability_paras"] svc = SVC(C=C_paras, kernel=kernel_paras, degree=degree, gamma=gamma, probability=probability, random_state=1) # 拟合模型 svc.fit(self.data["X_train"], self.data["y_train"]) # 进行预测 y_predict = svc.predict(self.data["X_test"]) # 评估性能 return metrics.accuracy_score(self.data["y_test"], y_predict) my_bounds = [ FloatVar(lb=0.01, ub=1000., name="C_paras"), StringVar(valid_sets=('linear', 'poly', 'rbf', 'sigmoid'), name="kernel_paras"), IntegerVar(lb=1, ub=5, name="degree_paras"), MixedSetVar(valid_sets=('scale', 'auto', 0.01, 0.05, 0.1, 0.5, 1.0), name="gamma_paras"), BoolVar(n_vars=1, name="probability_paras"), ] problem = SvmOptimizedProblem(bounds=my_bounds, minmax="max", data=data) model = SMA.OriginalSMA(epoch=100, pop_size=20) model.solve(problem) print(f"Best agent: {model.g_best}") print(f"Best solution: {model.g_best.solution}") print(f"Best accuracy: {model.g_best.target.fitness}") print(f"Best parameters: {model.problem.decode_solution(model.g_best.solution)}")

结语

MEALPY是一个功能强大、易于使用的Python库,为各种优化问题提供了广泛的元启发式算法。无论您是研究人员、工程师还是数据科学家,MEALPY都能为您的优化任务提供宝贵的工具和解决方案。通过其丰富的算法库、灵活的问题定义和强大的分析工具,MEALPY可以帮助您更快、更有效地解决复杂的优化问题。

如果您在使用MEALPY时发现它对您的工作有所帮助,请考虑在您的研究中引用MEALPY。您的支持将有助于MEALPY的持续发展和改进,使更多人受益于这个开源项目。

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多