MAR(Masked Autoregressive)是由MIT和Meta AI联合提出的一种新型自回归图像生成模型。与传统的自回归模型不同,MAR摒弃了向量量化(VQ)的使用,直接在连续的VAE潜在空间中进行自回归建模,从而能够生成更高质量、更多样化的图像。

MAR模型的核心思想是将图像生成过程分解为两个阶段:
这种方法避免了传统自回归模型中VQ带来的信息损失,能够更好地捕捉图像的细节和结构。
MAR最大的创新点在于摒弃了向量量化。传统自回归模型如VQ-VAE需要将连续的潜在表示离散化,这inevitably会导致信息损失。MAR直接在连续空间中建模,保留了更多细节信息。
MAR采用了一种称为DiffLoss的新型损失函数,能够在训练过程中更有效地学习像素间的依赖关系。在推理阶段,MAR使用了一种新的采样策略,大大提高了生成速度。
在ImageNet 256x256数据集上的实验表明,MAR在FID和Inception Score等指标上都达到了新的state-of-the-art水平。特别是MAR-H模型,在50K样本上达到了1.55的FID分数,展现了出色的图像生成质量。
MAR提供了多个不同规模的模型版本(MAR-B、MAR-L、MAR-H),可以根据具体应用场景和计算资源选择合适的模型。同时,MAR的架构也支持进一步的扩展和优化。
MAR的PyTorch实现主要包含以下几个关键组件:
VAE编码器: 使用预训练的VAE将输入图像编码到16维的潜在空间。
自回归Transformer: 核心的自回归模型,用于在潜在空间中逐步生成图像表示。
DiffLoss: 新设计的损失函数,用于更有效地学习像素间的依赖关系。
采样策略: 包括classifier-free guidance等技术,用于提高生成质量和多样性。
以下是MAR模型的核心代码片段:
class MAR(nn.Module): def __init__(self, ...): super().__init__() self.vae = ... # 预训练的VAE self.transformer = ... # 自回归Transformer self.diffloss = DiffLoss(...) # DiffLoss模块 def forward(self, x): z = self.vae.encode(x) # VAE编码 pred = self.transformer(z) # 自回归预测 loss = self.diffloss(pred, z) # 计算DiffLoss return loss
MAR的训练过程采用了分布式数据并行(DDP)技术,以充分利用多GPU资源。以MAR-L模型为例,其默认训练配置如下:
训练脚本示例:
torchrun --nproc_per_node=8 --nnodes=4 \ main_mar.py \ --model mar_large --diffloss_d 3 --diffloss_w 1024 \ --epochs 400 --warmup_epochs 100 --batch_size 64 --blr 1.0e-4 \ --output_dir ${OUTPUT_DIR} --data_path ${IMAGENET_PATH}
在评估阶段,MAR使用FID-50K和Inception Score作为主要指标。评估时可以启用classifier-free guidance来进一步提升生成质量。
MAR在图像生成领域展现出了巨大的潜力,其应用前景包括但不限于:
高质量图像合成: MAR可以生成逼真的高分辨率图像,适用于创意设计、广告制作等领域。
数据增强: 在计算机视觉任务中,MAR可以用于生成大量高质量的合成数据,提升模型性能。
图像编辑与修复: 结合MAR的生成能力,可以开发出更强大的图像编辑和修复工具。
艺术创作: MAR为数字艺术家提供了新的创作工具,可以生成独特的艺术作品。
虚拟现实内容生成: 在VR/AR领域,MAR可以用于生成丰富的虚拟环境和物体。
虽然MAR已经取得了显著的成果,但仍有很多值得探索的方向:
进一步提升生成质量: 通过改进模型架构和训练策略,有望达到更高的FID分数。
提高生成速度: 优化推理算法,使MAR能够实现实时图像生成。
扩展到其他任务: 将MAR的思想应用到视频生成、3D建模等更复杂的任务中。
结合其他AI技术: 探索MAR与大语言模型、强化学习等技术的结合,开发更智能的创作工具。
研究模型可解释性: 深入分析MAR的内部机制,提高模型的可解释性和可控性。
MAR作为一种无需向量量化的自回归图像生成模型,为图像生成领域带来了新的突破。它不仅在生成质量上达到了新的高度,也为未来的研究提供了宝贵的思路。随着技术的不断进步,我们有理由相信,MAR及其衍生技术将在计算机视觉、人工智能创意等领域发挥越来越重要的作用。
📌 如果您对MAR感兴趣,可以访问GitHub项目页面获取更多信息,包括代码实现、预训练模型和详细的使用说明。同时,我们也欢迎社区贡献者参与到MAR的开发和改进中来,共同推动图像生成技术的发展。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高 效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人 一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号