LViT(Language meets Vision Transformer)是一种新型的医学图像分割模型,由李子涵等人于2023年提出。该模型创新性地将自然语言处理技术与视觉变压器相结合,旨在解决医学图像分割中的一些关键挑战。
医学图像分割是计算机辅助诊断和治疗规划中的一项重要任务,但长期以来面临着以下问题:
为了应对这些挑战,LViT模型引入了医学文本注释来补充图像信息,充分利用了医生在诊断报告中的专业描述。这种多模态学习方法不仅可以弥补图像数据质量不足的问题,还能利用文本中的语义信息来指导分割过程。

LViT模型主要由以下几个关键组件构成:
视觉编码器采用Vision Transformer(ViT)结构,将输入图像分割成一系列图像块(patches),然后通过多层self-attention机制来提取图像特征。这种基于Transformer的结构相比传统CNN更能捕捉图像的长程依赖关系。
文本编码器使用BERT模型来处理医学文本注释。BERT通过双向Transformer结构可以有效地理解文本语义,提取出对分割任务有用的信息。
这是LViT的核心创新点之一。该模块通过注意力机制将视觉特征和文本特征进行对齐和融合,生成富含语义信息的多模态表示。
最后,融合后的特征通过一个轻量级的分割头进行上采样,生成最终的分割结果。
LViT在多个医学图像分割数据集上进行了广泛的实验,包括:
以下是部分实验结果:
| 数据集 | 模型 | Dice (%) | IoU (%) |
|---|---|---|---|
| QaTa-COV19 | U-Net | 79.02 | 69.46 |
| QaTa-COV19 | LViT-T | 83.66 | 75.11 |
| MosMedData+ | U-Net | 64.60 | 50.73 |
| MosMedData+ | LViT-T | 74.57 | 61.33 |
| MoNuSeg | U-Net | 76.45 | 62.86 |
| MoNuSeg | LViT-T | 80.36 | 67.31 |
| BKAI-Poly | LViT-TW | 92.07 | 80.93 |
| ESO-CT | LViT-TW | 68.27 | 57.02 |
从结果可以看出,LViT在所有数据集上都显著优于传统的U-Net模型,特别是在难度较大的新冠肺炎CT图像分割任务上,性能提升更为明显。
LViT模型在医学图像分割领域展现出了巨大的潜力,其应用前景包括但不限于:
LViT的官方实现代码已在GitHub上开源(https://github.com/HUANGLIZI/LViT)。研究者们可以按照以下步骤复现实验结果:
值得注意的是,为了确保结果的可重复性,作者在代码中仔细设置了随机种子,并将cudnn模式设为"确定性"。但由于硬件和CUDA版本等因素的影响,不同环境下的训练结果可能会有微小差异。
尽管LViT取得了显著成果,但仍有许多值得探索的方向:
LViT模型通过巧妙地结合自然语言处理和计算机视觉技术,为医学图像分割任务带来了新的突破。它不仅在性能上超越了现有方法,还为如何有效利用多模态医疗数据提供了新的思路。随着进一步的研究和优化,LViT有望在临床实践中发挥重要作用,推动医学影像技术的发展。
作为一个活跃的研究领域,医学图像分割还有很长的路要走。LViT的成功为未来的研究指明了方向:利用多模态信息、结合领域知识,以及开发更智能、更可解释的算法。我们期待看到更多创新性的工作,最终造福 于患者和整个医疗健康领域。


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。