低光照图像和视频增强技术综述:从传统方法到深度学习

RayRay
低光照图像增强深度学习计算机视觉图像处理视频增强Github开源项目

引言

低光照图像和视频增强(Low-Light Image and Video Enhancement, LLIE)是计算机视觉领域的一个重要研究方向。在日常生活和专业应用中,我们经常会遇到在弱光环境下拍摄的图像和视频,这些低光照数据往往存在可见度低、细节丢失、噪声严重等问题,严重影响了后续的视觉分析和处理。因此,如何有效地增强低光照图像和视频的质量,提升其可见度和可用性,成为了一个备受关注的研究课题。

近年来,随着深度学习技术的快速发展,LLIE领域取得了长足的进步。本文旨在对LLIE领域进行全面的综述,梳理该领域的发展脉络,总结主要的技术方法,并展望未来的研究方向。

LLIE的发展历程

LLIE的研究可以追溯到20世纪70年代,最初主要基于图像处理的传统方法。随着计算机视觉和机器学习技术的发展,LLIE的方法逐渐向数据驱动和学习式方法转变。我们可以将LLIE的发展大致分为以下几个阶段:

  1. 传统图像处理阶段(1970s-2000s):主要包括直方图均衡化、Retinex理论等基于图像处理的方法。

  2. 机器学习阶段(2000s-2015):开始引入机器学习技术,如稀疏编码、字典学习等方法。

  3. 深度学习初期(2015-2018):CNN等深度学习模型被引入LLIE领域,但主要是端到端的直接映射。

  4. 深度学习快速发展期(2018至今):各种先进的深度学习模型被提出,如GAN、Transformer等,LLIE的性能得到显著提升。

LLIE发展历程

LLIE方法分类

根据处理原理和模型结构,我们可以将LLIE方法大致分为以下几类:

  1. 基于Retinex理论的方法
  2. 基于直方图调整的方法
  3. 基于图像分解的方法
  4. 基于深度学习的直接映射方法
  5. 基于生成对抗网络(GAN)的方法
  6. 基于强化学习的方法
  7. 基于Transformer的方法

其中,深度学习方法又可以根据是否需要配对数据进行监督学习,分为有监督、半监督和无监督方法。

LLIE方法分类

代表性算法

本节将介绍LLIE领域一些具有代表性的算法,按照发表时间顺序进行梳理。

传统方法

  1. LIME (TIP 2016): LIME提出了一种基于illumination map估计的低光照图像增强方法。该方法首先估计输入图像的illumination map,然后根据估计的illumination map对原始图像进行增强。LIME方法简单有效,在当时取得了不错的效果。

  2. LightenNet (PRL 2018): LightenNet是一种基于卷积神经网络的弱光照图像增强方法。该网络采用了一种轻量级的结构,通过学习图像的明暗对比关系来实现增强效果。LightenNet在计算效率和增强效果之间取得了较好的平衡。

深度学习方法

  1. Retinex-Net (BMVC 2018): Retinex-Net将传统的Retinex理论与深度学习相结合,提出了一种端到端的低光照图像增强网络。该网络包含了反射分量估计、照明分量估计和重建三个子网络,能够有效地处理不同程度的低光照图像。

  2. EnlightenGAN (TIP 2021): EnlightenGAN是一种基于生成对抗网络(GAN)的无监督低光照图像增强方法。该方法不需要配对的低光照-正常光照图像对进行训练,而是通过对抗学习来生成增强后的图像。EnlightenGAN在真实场景的低光照图像增强任务中表现出色。

  3. Zero-DCE (CVPR 2020): Zero-DCE提出了一种零参考的深度曲线估计方法,用于低光照图像增强。该方法通过学习一组像素级的曲线来调整图像的亮度,不需要配对数据或参考图像,具有很强的实用性和泛化能力。

  4. KinD++ (IJCV 2021): KinD++是一种基于图像分解的低光照图像增强方法。该方法将输入图像分解为反射分量和照明分量,分别对两个分量进行增强,然后重新组合得到最终的增强结果。KinD++在保持图像细节和颜色保真度方面表现优异。

  5. LLFlow (AAAI 2022): LLFlow引入了标准化流(Normalizing Flow)的概念,提出了一种基于可逆网络的低光照图像增强方法。该方法能够学习低光照图像到正常光照图像的概率分布映射,在增强效果和计算效率方面都取得了不错的效果。

传统方法与深度学习方法对比

数据集

高质量的数据集对于LLIE研究至关重要。以下是一些常用的LLIE数据集:

  1. LOL (Low-Light Dataset):包含500对低光照-正常光照图像对,是最常用的LLIE数据集之一。

  2. SICE (Scene Illumination and Capture Expert Dataset):包含来自589个场景的多曝光序列图像,适用于多曝光融合和HDR重建任务。

  3. ExDark:一个专门用于低光照目标检测的数据集,包含7363张图像,涵盖12个目标类别。

  4. ACDC (Adverse Conditions Dataset with Correspondences):一个包含4006张图像的自动驾驶场景数据集,涵盖了不同天气和光照条件。

  5. Night Wenzhou:本文作者提出的一个新的低光照视频数据集,包含了快速移动的航拍场景和具有不同光照和退化的街景。

研究人员还提出了一些合成数据集,如SICE_Grad和SICE_Mix,用于模拟复杂的混合过曝光/欠曝光场景。

SICE_Grad和SICE_Mix数据集示例

评价指标

LLIE方法的评价通常包括定量指标和定性评估两个方面。

定量指标

  1. 全参考指标:

    • PSNR (Peak Signal-to-Noise Ratio)
    • SSIM (Structural Similarity Index)
    • LPIPS (Learned Perceptual Image Patch Similarity)
  2. 无参考指标:

    • NIQE (Natural Image Quality Evaluator)
    • BRISQUE (Blind/Referenceless Image Spatial Quality Evaluator)
    • SPAQ (Smartphone Photography Attribute and Quality)

定性评估

除了客观的定量指标,主观的定性评估也是非常重要的。这通常包括:

  1. 视觉比较:直接比较不同方法增强后的图像效果。
  2. 用户研究:让人类观察者对增强结果进行评分或排序。
  3. 下游任务性能:评估增强后的图像在目标检测、分割等下游任务中的性能。

挑战与未来方向

尽管LLIE领域取得了显著进展,但仍然面临一些挑战和有待探索的方向:

  1. 真实场景的鲁棒性:如何提高LLIE方法在复杂、多变的真实场景中的鲁棒性和泛化能力。

  2. 计算效率:在保证增强效果的同时,如何进一步提高算法的计算效率,使其适用于移动设备和实时应用。

  3. 视频增强:相比于单帧图像增强,低光照视频增强还需要考虑时间一致性等问题,有待进一步研究。

  4. 多模态融合:如何结合其他模态的信息(如红外、深度等)来提升低光照增强的效果。

  5. 可解释性:提高LLIE方法的可解释性和可控性,使其更加可信和易于调整。

  6. 特定任务优化:针对不同的下游任务(如目标检测、人脸识别等)优化LLIE方法,以获得更好的任务性能。

结论

低光照图像和视频增强是一个具有重要实际应用价值的研究领域。本文对LLIE的发展历程、主要方法、数据集和评价指标等方面进行了全面的综述。随着深度学习技术的不断进步,LLIE领域已经取得了显著的成果。然而,仍然存在许多挑战和值得探索的方向。未来,结合多模态信息、提高方法的鲁棒性和可解释性、针对特定任务进行优化等方向可能会成为LLIE研究的重点。我们期待看到更多创新性的工作,推动LLIE技术在实际应用中发挥更大的作用。

参考资源

对于想要深入学习LLIE的研究者,以下是一些有用的资源:

  1. LLIE_Survey GitHub仓库:包含了本文提到的许多方法的实现和数据集链接。

  2. Awesome Low Light Image Enhancement:一个精心整理的LLIE相关资源列表。

  3. Lighting the Darkness in the Deep Learning Era:另一个全面的LLIE相关资源集合。

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多