LLaMA-MoE学习资料汇总 - 基于LLaMA的轻量级混合专家模型

RayRay
LLaMA-MoELLaMAMoESlimPajamaSheared LLaMAGithub开源项目

LLaMA-MoE:基于LLaMA的轻量级混合专家模型

LLaMA-MoE是一个基于LLaMA和SlimPajama的开源混合专家(Mixture-of-Experts, MoE)模型系列。该项目旨在构建一个轻量级且人人可用的MoE模型。本文将为大家介绍LLaMA-MoE的主要特点、安装使用方法以及相关学习资源。

项目简介

LLaMA-MoE通过以下两个步骤构建:

  1. 将LLaMA的前馈网络划分为稀疏专家,并为每层专家插入top-K门控。
  2. 使用来自Sheared LLaMA的优化数据采样权重和SlimPajama的过滤数据集,对初始化的MoE模型进行持续预训练。

MoE Routing

主要特点

  1. 轻量级模型:激活的模型参数仅为3.0-3.5B,便于部署和研究使用。
  2. 多种专家构建方法:包括神经元独立和神经元共享两大类。
  3. 多种MoE门控策略:TopK Noisy Gate和Switch Gating。
  4. 快速持续预训练:集成FlashAttention-v2,支持快速流式数据集加载。
  5. 丰富的监控项:包括门控负载、损失、TGS、MFU等。
  6. 动态权重采样:支持自定义静态采样权重和Sheared LLaMA的动态批处理加载。

快速开始

以下是使用LLaMA-MoE模型的简单示例:

import torch from transformers import AutoTokenizer, AutoModelForCausalLM model_dir = "llama-moe/LLaMA-MoE-v1-3_5B-2_8" tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_dir, torch_dtype=torch.bfloat16, trust_remote_code=True) model.eval() model.to("cuda:0") input_text = "Suzhou is famous of" inputs = tokenizer(input_text, return_tensors="pt") inputs = inputs.to("cuda:0") pred = model.generate(**inputs, max_length=50, temperature=0.0) print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))

安装指南

  1. 准备conda环境:conda create -n smoe python=3.11
  2. 安装PyTorch: pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
  3. 安装依赖: pip install -r requirements.txt
  4. 安装flash-attn: pip install flash-attn==2.0.1 --no-build-isolation
  5. 克隆仓库: git clone git@github.com:pjlab-sys4nlp/llama-moe.git
  6. 安装smoe: pip install -e .[dev]

详细的安装步骤请参考项目README

模型性能

LLaMA-MoE提供了多个版本的模型,包括3.0B和3.5B参数规模。以下是部分模型在各项任务上的表现:

模型平均分SciQPIQAWinoGrandeARC-eARC-cHellaSwagLogiQABoolQLAMBADANQMMLU
LLaMA-MoE-3.0B55.584.277.563.660.240.970.830.671.966.617.026.8
LLaMA-MoE-3.5B (4/16)57.787.677.965.565.644.273.329.775.069.520.326.8
LLaMA-MoE-3.5B (2/8)57.688.477.666.765.343.173.329.673.969.419.827.0

完整的性能数据请查看项目README

相关资源

总结

LLaMA-MoE项目为研究人员和开发者提供了一个轻量级且易于使用的混合专家模型。通过本文介绍的资源,读者可以快速了解项目的核心概念,并开始使用LLaMA-MoE进行实验和开发。欢迎大家探索这个有趣的项目,为NLP领域的发展贡献力量。

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多