Laplace近似:深度学习中的贝叶斯推断利器

RayRay
Laplace神经网络贝叶斯深度学习后验近似边缘似然Github开源项目

Laplace

Laplace近似:贝叶斯深度学习的有力工具

在机器学习和深度学习领域,准确预测和量化不确定性一直是一个重要的研究方向。传统的深度神经网络虽然在许多任务上取得了出色的性能,但往往缺乏对预测结果不确定性的估计。这就是贝叶斯深度学习方法发挥作用的地方,而Laplace近似则是其中一种强大而灵活的技术。

Laplace近似的基本原理

Laplace近似是一种用于近似后验分布的方法,最初由法国数学家Pierre-Simon Laplace提出。在深度学习的背景下,它可以用来估计神经网络参数的后验分布,从而为模型预测提供不确定性量化。

Laplace近似的核心思想是,将复杂的后验分布approximated by一个多元高斯分布。这个近似是通过在最大后验概率(MAP)估计点周围进行二阶泰勒展开来实现的。具体来说,Laplace近似包括以下步骤:

  1. 找到模型参数的MAP估计
  2. 计算MAP点处的Hessian矩阵(或其近似)
  3. 使用MAP估计作为均值,Hessian的逆作为协方差矩阵,构造一个多元高斯分布

通过这种方式,我们可以将原本复杂的后验分布简化为一个易于处理的高斯分布,从而在保持计算效率的同时提供不确定性估计。

Laplace近似的应用场景

Laplace近似在深度学习中有着广泛的应用,特别是在需要不确定性量化的场景中。以下是一些典型的应用场景:

  1. 预测不确定性估计:在分类或回归任务中,Laplace近似可以为每个预测提供置信区间或预测分布,而不仅仅是点估计。

  2. 主动学习:通过量化模型的不确定性,可以更有效地选择需要标注的样本,从而减少标注成本。

  3. 异常检测:对于模型不确定的输入,Laplace近似可以帮助识别潜在的异常或分布外样本。

  4. 模型选择:使用边际似然估计,Laplace近似可以帮助在不同模型架构或超参数之间进行选择。

  5. 持续学习:在增量学习场景中,Laplace近似可以用来估计参数的不确定性,从而在保留旧知识的同时适应新数据。

laplace-torch:实现Laplace近似的强大工具

为了让研究人员和实践者更容易地在深度学习项目中应用Laplace近似,aleximmer等人开发了laplace-torch库。这个库提供了一套全面的工具,用于对PyTorch模型进行Laplace近似。

Laplace library logo

主要特性

laplace-torch库具有以下主要特性:

  1. 灵活性:支持对整个神经网络、子网络或仅最后一层进行Laplace近似。
  2. 多种Hessian近似:提供多种Hessian矩阵的近似方法,包括对角、Kronecker因子化、低秩等。
  3. 边际似然估计:支持模型选择和超参数优化。
  4. 多种预测方法:包括蒙特卡洛采样、高斯过程近似等。
  5. 与现有PyTorch模型的无缝集成:可以轻松应用于预训练模型。

使用示例

以下是使用laplace-torch对预训练模型进行Laplace近似的简单示例:

from laplace import Laplace # 加载预训练模型 model = load_map_model() # 创建Laplace近似对象 la = Laplace(model, "classification", subset_of_weights="all", hessian_structure="diag") # 拟合Laplace近似 la.fit(train_loader) # 优化先验精度 la.optimize_prior_precision( method="gridsearch", pred_type="glm", link_approx="probit", val_loader=val_loader ) # 使用Laplace近似进行预测 pred = la(x, pred_type="glm", link_approx="probit")

这个例子展示了如何对一个分类模型应用Laplace近似,并使用它来进行带有不确定性估计的预测。

深入探讨:Laplace近似的高级应用

子网络Laplace近似

在某些情况下,我们可能只想对神经网络的一部分参数进行贝叶斯推断。laplace-torch提供了子网络Laplace近似的功能,允许用户灵活地选择要进行推断的参数子集。

from laplace.utils import LargestMagnitudeSubnetMask # 选择最大幅度的128个参数 subnetwork_mask = LargestMagnitudeSubnetMask(model, n_params_subnet=128) subnetwork_indices = subnetwork_mask.select() # 对选定的子网络应用Laplace近似 la = Laplace(model, "classification", subset_of_weights="subnetwork", hessian_structure="full", subnetwork_indices=subnetwork_indices) la.fit(train_loader)

这种方法特别适用于大型模型,可以在保持计算效率的同时获得贝叶斯推断的好处。

边际似然估计与模型选择

Laplace近似的一个强大应用是通过边际似然估计进行模型选择。laplace-torch使这一过程变得简单:

# 拟合Laplace近似 la = Laplace(model, likelihood="regression") la.fit(train_loader) # 计算边际对数似然 ml = la.log_marginal_likelihood(prior_prec, obs_noise) ml.backward() # 可以用于优化超参数

通过比较不同模型或超参数设置的边际似然,研究人员可以选择最佳的模型配置。

Laplace近似在大型语言模型中的应用

随着大型语言模型(LLMs)的兴起,将贝叶斯方法应用于这些复杂模型变得越来越重要。laplace-torch库也支持对LLMs进行Laplace近似,特别是在参数高效微调(PEFT)的情况下。

以下是一个使用LoRA(Low-Rank Adaptation)微调的GPT-2模型并应用Laplace近似的示例:

from transformers import GPT2ForSequenceClassification, GPT2Config from peft import get_peft_model, LoraConfig class MyGPT2(nn.Module): def __init__(self, tokenizer): super().__init__() config = GPT2Config.from_pretrained("gpt2") config.pad_token_id = tokenizer.pad_token_id config.num_labels = 2 self.hf_model = GPT2ForSequenceClassification.from_pretrained( "gpt2", config=config ) def forward(self, data): device = next(self.parameters()).device input_ids = data["input_ids"].to(device) attn_mask = data["attention_mask"].to(device) output_dict = self.hf_model(input_ids=input_ids, attention_mask=attn_mask) return output_dict.logits # 创建LoRA模型 lora_model = get_peft_model(MyGPT2(tokenizer), LoraConfig(...)) # 训练LoRA模型... # 应用Laplace近似 lora_la = Laplace( lora_model, likelihood="classification", subset_of_weights="all", hessian_structure="diag", backend=AsdlGGN, ) lora_la.fit(train_loader) # 使用Laplace近似进行预测 test_data = next(iter(dataloader)) lora_pred = lora_la(test_data)

这个例子展示了如何将Laplace近似应用于使用LoRA微调的GPT-2模型。通过这种方式,我们可以为大型语言模型的预测提供不确定性估计,这在许多实际应用中都是非常有价值的。

结论与展望

Laplace近似作为一种简单而强大的贝叶斯推断方法,在深度学习领域有着广泛的应用前景。通过laplace-torch库,研究人员和实践者可以轻松地将这一技术应用到各种深度学习模型中,从而获得更可靠的不确定性估计和更好的模型选择能力。

随着深度学习技术的不断发展,特别是在大型语言模型和参数高效微调方法的背景下,Laplace近似的重要性可能会进一步增加。未来的研究方向可能包括:

  1. 改进Laplace近似在大规模模型上的计算效率
  2. 探索Laplace近似与其他贝叶斯方法(如变分推断)的结合
  3. 在更多实际应用场景中验证Laplace近似的有效性,如医疗诊断、自动驾驶等高风险决策领域

总的来说,Laplace近似为深度学习模型提供了一个强大的贝叶斯推断工具,而laplace-torch库则使这一工具变得易于使用。随着更多研究者和实践者开始探索这一领域,我们有理由期待在不久的将来看到更多创新性的应用和理论突破。

Laplace approximation illustration

参考资料

  1. Daxberger, E., et al. (2021). Laplace Redux — Effortless Bayesian Deep Learning. NeurIPS 2021.
  2. MacKay, D. J. C. (1992). A Practical Bayesian Framework for Backpropagation Networks. Neural Computation.
  3. Immer, A., et al. (2021). Improving predictions of Bayesian neural nets via local linearization. AISTATS 2021.
  4. Kristiadi, A., et al. (2020). Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks. ICML 2020.
  5. aleximmer/Laplace GitHub repository: https://github.com/aleximmer/Laplace

通过本文的介绍,希望读者能够对Laplace近似在深度学习中的应用有一个全面的了解,并能够利用laplace-torch库在自己的项目中实践这一强大的贝叶斯推断工具。随着技术的不断发展,我们期待看到更多基于Laplace近似的创新应用,为人工智能的可解释性和可靠性做出贡献。

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多