在人工智能和自然语言处理领域,大语言模型(LLM)的应用日益广泛。然而,使用商业API服务往往成本高昂,且存在数据隐私问题。本文将介绍如何利用LangServe和Ollama在本地部署和使用开源大语言模型,让您能够以更低成本、更灵活的方式构建AI应用。
LangServe是LangChain提供的一个部署工具,可以轻松地将LangChain应用部署为API服务。Ollama则是一个强大的工具,能够在本地运行各种开源大语言模型。两者结合,为开发者提供了一个便捷的本地LLM解决方案。
首先,我们需要从Hugging Face下载所需的模型文件。以EEVE-Korean-Instruct-10.8B模型为例:
pip install huggingface-hub huggingface-cli download \ heegyu/EEVE-Korean-Instruct-10.8B-v1.0-GGUF \ ggml-model-Q5_K_M.gguf \ --local-dir 您的下载目录 \ --local-dir-use-symlinks False
下载完模型文件后,需要为Ollama创建一个Modelfile:
FROM ggml-model-Q5_K_M.gguf
TEMPLATE """{{- if .System }}
<s>{{ .System }}</s>
{{- end }}
<s>Human:
{{ .Prompt }}</s>
<s>Assistant:
"""
SYSTEM """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions."""
PARAMETER stop <s>
PARAMETER stop </s>
然后使用以下命令创建Ollama模型:
ollama create EEVE-Korean-10.8B -f EEVE-Korean-Instruct-10.8B-v1.0-GGUF/Modelfile
接下来,我们使用LangServe创建一个API服务。以下是一个简单的示例代码:
from fastapi import FastAPI from langchain.llms import Ollama from langchain.prompts import PromptTemplate from langserve import add_routes app = FastAPI(title="LangChain Server") llm = Ollama(model="EEVE-Korean-10.8B") prompt = PromptTemplate.from_template("请回答以下问题: {question}") chain = prompt | llm add_routes(app, chain, path="/qa") if __name__ == "__main__": import uvicorn uvicorn.run(app, host="localhost", port=8000)
运行这段代码,就可以启动一个本地的LLM API服务。
如果您希望外部能够访问您的API服务,可以使用ngrok进行端口转发:
ngrok http localhost:8000
结合LangServe和Ollama,我们还可以轻松实现一个检索增强生成(RAG)系统。以下是一个简单的示例:
from langchain.vectorstores import Chroma from langchain.embeddings import HuggingFaceEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.chains import RetrievalQA # 准备文档 with open("your_document.txt", "r") as f: raw_text = f.read() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_text(raw_text) # 创建向量存储 embeddings = HuggingFaceEmbeddings() docsearch = Chroma.from_texts(texts, embeddings) # 创建RAG链 qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=docsearch.as_retriever()) # 添加到LangServe路由 add_routes(app, qa, path="/rag")
这个例子展示了如何创建一个基本的RAG系统,它能够根据用户的问题从预先准备的文档中检索相关信息,然后生成回答。
在使用本地LLM时,监控系统性能非常重要。您可以使用asitop工具来监控GPU使用情况:
pip install asitop asitop
通过LangServe和Ollama,我们可以轻松地在本地部署和使用开源大语言模型。这不仅可以降低成本,还能保护数据隐私,同时为开发者提供了更大的灵活性和可控性。随着开源LLM的不断发展,这种本地部署方案将为AI应用开发带来更多可能性。
无论您是开发聊天机器人、问答系统,还是更复杂的AI应用,LangServe和Ollama都能为您提供强大的支持。希望本文能够帮助您开启本地LLM应用的开发之旅。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的 强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号