KTransformers是一个旨在增强🤗 Transformers体验的灵活框架,通过引入先进的内核优化和放置/并行策略,实现了大语言模型(LLM)推理的高效优化。作为一个以Python为中心的框架,KTransformers具有极强的可扩展性,用户只需一行代码即可实现优化模块的注入,就能获得与Transformers兼容的接口、符合OpenAI和Ollama标准的RESTful API,甚至是简化版的ChatGPT风格Web UI。
KTransformers的愿景是成为一个灵活的平台,用于尝试创新的LLM推理优化方法。它的核心优势在于能够在有限的计算资源下,实现大型语言模型的高效本地部署和运行。
KTransformers近期的主要更新包括:
KTransformers在仅有24GB显存的桌面环境下,实现了对InternLM 2.5 7B模型的100万token上下文推理:
KTransformers支持在仅有24GB显存的桌面环境下运行236B参数量的DeepSeek-Coder-V2模型:
可以通过以下三种方式之一安装KTransformers:
pip install ktransformers --no-build-isolation
以DeepSeek-V2-Lite-Chat-GGUF模型为例:
python -m ktransformers.local_chat --model_path deepseek-ai/DeepSeek-V2-Lite-Chat --gguf_path ./DeepSeek-V2-Lite-Chat-GGUF
KTransformers目前支持多种大型语言模型,包括DeepSeek-V2、Qwen2-57B、Mixtral-8x7B等。每种模型都有相应的VRAM和DRAM需求,用户可根据自身硬件条件选择合适的模型。
KTransformers提供了RESTful API服务和Web UI界面:
启动不带网页的服务:
ktransformers --model_path deepseek-ai/DeepSeek-V2-Lite-Chat --gguf_path /path/to/DeepSeek-V2-Lite-Chat-GGUF --port 10002
启动带网页的服务:
ktransformers --model_path deepseek-ai/DeepSeek-V2-Lite-Chat --gguf_path /path/to/DeepSeek-V2-Lite-Chat-GGUF --port 10002 --web True
访问 http://localhost:10002/web/index.html#/chat 即可使用Web界面。
KTransformers的核心是一个用户友好的、基于模板的注入框架。研究人员可以轻松地将原始torch模块替换为优化变体,并探索多种优化的协同效果。
用户只需创建基于YAML的注入模板,并在使用Transformers模型之前调用optimize_and_load_gguf
函数:
with torch.device("meta"): model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) optimize_and_load_gguf(model, optimize_rule_path, gguf_path, config) ... generated = prefill_and_generate(model, tokenizer, input_tensor.cuda(), max_new_tokens=1000)
用户可以通过编写YAML模板来自定义模型优化规则。例如,将所有原始Linear模块替换为Marlin(一种先进的4位量化内核):
- match: name: "^model\.layers\...*$" class: torch.nn.Linear replace: class: ktransformers.operators.linear.KTransformerLinear device: "cpu" kwargs: generate_device: "cuda" generate_linear_type: "QuantizedLinearMarlin"
KTransformers为大语言模型的本地部署和推理优化提供了一个灵活、高效的解决方案。它不仅支持多种先进模型,还提供了易于使用的API和Web界面。通过其独特的注入式优化框架,研究人员和开发者可以轻松尝试各种优化策略,推动LLM推理技术的进步。
KTransformers项目由清华大学MADSys小组和Approaching.AI的成员积极维护和开发。该项目欢迎新的贡献者加入,共同努力使KTransformers变得更快、更易用。随着大语言模型在各行各业的广泛应用,KTransformers无疑将在推动AI技术的民主化和普及方面发挥重要作用 。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的 优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号