生成对抗网络(Generative Adversarial Networks, GAN)是近年来深度学习领域最热门的研究方向之一。自2014年Ian Goodfellow等人提出GAN以来,各种GAN变体层出不穷,在图像生成、风格迁移、超分辨率等多个领域取得了突破性进展。然而,由于GAN的训练较为困难,实现一个稳定工作的GAN模型并非易事。
Keras-GAN项目旨在为深度学习研究者和实践者提供各种GAN的Keras参考实现。该项目由Erik Linder-Norén发起,目前已包含20多种GAN变体的实现,涵盖了DCGAN、CGAN、CycleGAN等经典模型。所有模型都使用Keras深度学习框架实现,代码简洁易懂,非常适合学习和二次开发。
涵盖广泛:包含20多种GAN变体实现,几乎覆盖了所有主流GAN模型。
代码规范:所有模型都遵循相似的代码结构,便于对比学习不同GAN的异同。
易于使用:每个模型都提供了训练和生成示例,只需几行命令即可运行。
详细文档:README中对每个模型都有简要介绍和论文链接,方便深入学习。
持续更新:项目一直在维护,不断加入新的GAN变体实现。
Keras-GAN项目实现的部分经典GAN模型包括:
DCGAN:第一个成功将CNN应用于GAN的模型,极大提升了GAN生成图像的质量。
Conditional GAN:引入条件信息,实现可控的图像生成。
CycleGAN:无需配对数据的图像风格迁移模型。
Pix2Pix:有监督的图像到图像转换模型。
WGAN:引入Wasserstein距离,提高GAN训练稳定性。
下面我们来详细介绍其中几个代表性模型。
DCGAN(Deep Convolutional GAN)是第一个成功将卷积神经网络应用于GAN的模型。相比原始GAN使用全连接网络,DCGAN的生成器和判别器都采用了卷积结构,大幅提升了生成图像的质量。
DCGAN的主要改进包括:
DCGAN的Keras实现代码如下:
def build_generator(self): model = Sequential() model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim)) model.add(Reshape((7, 7, 128))) model.add(UpSampling2D()) model.add(Conv2D(128, kernel_size=3, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(Activation("relu")) model.add(UpSampling2D()) model.add(Conv2D(64, kernel_size=3, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(Activation("relu")) model.add(Conv2D(self.channels, kernel_size=3, padding="same")) model.add(Activation("tanh")) return model def build_discriminator(self): model = Sequential() model.add(Conv2D(32, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same")) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(Conv2D(64, kernel_size=3, strides=2, padding="same")) model.add(ZeroPadding2D(padding=((0,1),(0,1)))) model.add(BatchNormalization(momentum=0.8)) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(Conv2D(128, kernel_size=3, strides=2, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(Conv2D(256, kernel_size=3, strides=1, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(1, activation='sigmoid')) return model
DCGAN在MNIST数据集上的生成效果如下:
Conditional GAN(CGAN)通过在输入中加入额外的条件信息(如类别标签),实现了对生成过程的控制。这使得GAN可以生成指定类别的样本,大大增强了模型的实用性。
CGAN的主要改进是在生成器和判别器的输入中都加入条件信息:
CGAN的Keras实现关键代码如下:
def build_generator(self): model = Sequential() model.add(Dense(256, input_dim=self.latent_dim+self.num_classes)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(1024)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(np.prod(self.img_shape), activation='tanh')) model.add(Reshape(self.img_shape)) noise = Input(shape=(self.latent_dim,)) label = Input(shape=(1,), dtype='int32') label_embedding = Flatten()(Embedding(self.num_classes, self.latent_dim)(label)) model_input = concatenate([noise, label_embedding]) img = model(model_input) return Model([noise, label], img) def build_discriminator(self): model = Sequential() model.add(Dense(512, input_dim=np.prod(self.img_shape)+self.num_classes)) model.add(LeakyReLU(alpha=0.2)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.4)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.4)) model.add(Dense(1, activation='sigmoid')) img = Input(shape=self.img_shape) label = Input(shape=(1,), dtype='int32') label_embedding = Flatten()(Embedding(self.num_classes, np.prod(self.img_shape))(label)) flat_img = Flatten()(img) model_input = concatenate([flat_img, label_embedding]) validity = model(model_input) return Model([img, label], validity)
CGAN在MNIST数据集上可以生成指定数字的手写体图像:
CycleGAN是一种无需配对数据的图像到图像转换模型。它可以学习两个域之间的映射关系,实现风格迁移、季节变换等任务。CycleGAN的核心思想是引入循环一致性损失,确保转换的可逆性。
CycleGAN包含两个生成器G和F,以及两个判别器DA和DB。其训练目标包括:
CycleGAN的核心实现代码如下:
def build_generator(self): """U-Net Generator""" def conv2d(layer_input, filters, f_size=4): """Layers used during downsampling""" d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input) d = LeakyReLU(alpha=0.2)(d) d = InstanceNormalization()(d) return d def deconv2d(layer_input, skip_input, filters, f_size=4, dropout_rate=0): """Layers used during upsampling""" u = UpSampling2D(size=2)(layer_input) u = Conv2D(filters, kernel_size=f_size, strides=1, padding='same', activation='relu')(u) if dropout_rate: u = Dropout(dropout_rate)(u) u = InstanceNormalization()(u) u = Concatenate()([u, skip_input]) return u # Image input d0 = Input(shape=self.img_shape) # Downsampling d1 = conv2d(d0, self.gf) d2 = conv2d(d1, self.gf*2) d3 = conv2d(d2, self.gf*4) d4 = conv2d(d3, self.gf*8) # Upsampling u1 = deconv2d(d4, d3, self.gf*4) u2 = deconv2d(u1, d2, self.gf*2) u3 = deconv2d(u2, d1, self.gf) u4 = UpSampling2D(size=2)(u3) output_img = Conv2D(self.channels, kernel_size=4, strides=1, padding='same', activation='tanh')(u4) return Model(d0, output_img) def build_discriminator(self): def d_layer(layer_input, filters, f_size=4, normalization=True): """Discriminator layer""" d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input) d = LeakyReLU(alpha=0.2)(d) if normalization: d = InstanceNormalization()(d) return d img = Input(shape=self.img_shape) d1 = d_layer(img, self.df, normalization=False) d2 = d_layer(d1, self.df*2) d3 = d_layer(d2, self.df*4) d4 = d_layer(d3, self.df*8) validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(d4) return Model(img, validity)
CycleGAN可以实现多种有趣的图像转换效果,如下图所示的苹果到橙子的转换:
Keras-GAN项目的使用非常简单,以DCGAN为例:
git clone https://github.com/eriklindernoren/Keras-GAN
cd Keras-GAN/
pip install -r requirements.txt
cd dcgan/
python3 dcgan.py
每个模型文件夹下都有独立的Python脚本,直接运行即可开始训练。训练过程中会定期保存生成的图像样本,可以直观地观察训练进展。
Keras-GAN项目为我们提供了丰富的GAN参考实现,是学习和实践GAN的绝佳资源。通过阅读和运行这些代码,我们可以深入理解各种GAN的工作原理,为自己的GAN应用开发打下坚实基础。
尽管该项目目前已停止更新,但其中的大部分模型实现仍然具有很高的参考价值。研究者和
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号