Instruction-tuned Stable Diffusion: 通过InstructPix2Pix实现更精准的图像处理

RayRay
Stable Diffusion指令微调图像处理卡通化低级图像处理Github开源项目

instruction-tuned-sd

Instruction-tuned Stable Diffusion:通过InstructPix2Pix实现更精准的图像处理

近年来,大型语言模型(LLM)在遵循指令完成任务方面取得了令人瞩目的进展。受此启发,研究人员开始探索如何将这种指令跟随能力应用到图像生成和编辑领域。Hugging Face团队基于FLAN和InstructPix2Pix的思路,提出了一种新的方法来对Stable Diffusion进行指令微调,使其能够更好地理解和执行特定的图像处理指令。

项目背景与动机

指令微调是一种有监督的方法,旨在教会语言模型遵循指令来解决任务。这一概念最初由Google在FLAN(Fine-tuned Language Models Are Zero-Shot Learners)论文中提出。近期的Alpaca和FLAN V2等工作进一步展示了指令微调对各种任务的巨大效益。

另一方面,InstructPix2Pix引入了让Stable Diffusion遵循用户指令对输入图像进行编辑的想法。Hugging Face团队的这项工作部分受到FLAN系列工作的启发,部分受到InstructPix2Pix的影响。他们希望探索是否可以用特定指令和输入图像来提示Stable Diffusion,使其按需要处理图像。

指令微调Stable Diffusion示意图

他们的主要思路是首先创建一个指令提示数据集,然后进行InstructPix2Pix风格的训练。最终目标是让Stable Diffusion更好地遵循涉及图像转换相关操作的特定指令。

数据准备

数据准备过程受到FLAN的启发。团队针对卡通化和低级图像处理两个任务准备了数据集。

卡通化数据集

卡通化数据集的创建流程如下:

  1. 使用ChatGPT生成50个同义句来表达"将图像卡通化"这一指令。

  2. 从Imagenette数据集中随机选取5000个样本,使用预训练的Whitebox CartoonGAN模型生成这些图像的卡通版本作为标签。

  3. 将原始图像、指令和卡通化后的图像组合成训练样本。

最终的卡通化数据集可在Hugging Face数据集库中找到。

低级图像处理数据集

低级图像处理数据集涵盖了去雨、去噪、低光照增强和去模糊四个常见任务。团队从多个公开数据集中采样,并为每个任务添加了相应的指令提示。最终数据集可在这里获取。

这种混合多任务的设置与FLAN的思路相似,有助于训练出一个能够同时处理多种低级图像处理任务的单一模型。这与传统的低级图像处理方法有所不同,后者通常需要为每个任务单独训练模型。

训练实验与结果

团队基于InstructPix2Pix训练脚本进行了实验。他们探索了两种训练策略:

  1. 从现有的InstructPix2Pix检查点微调
  2. 使用InstructPix2Pix训练方法从Stable Diffusion检查点开始训练

实验发现,第一种策略能够更快地适应新数据集。

卡通化结果

团队将指令微调后的卡通化模型与预训练的InstructPix2Pix模型和CartoonGAN模型进行了比较。结果显示,指令微调模型能够更忠实地匹配CartoonGAN的输出效果。

卡通化结果比较

低级图像处理结果

在去雨任务上,指令微调模型相比预训练的InstructPix2Pix模型展现出了更令人信服的结果:

去雨结果比较

然而,在低光照增强和去模糊等任务上,模型的表现仍有待改进。这可能是由于这些任务的训练样本不足所致。

潜在应用与局限性

在图像编辑领域,专业人士的意图(要执行的任务)与编辑工具中需要执行的具体操作之间存在脱节。能够将自然语言目标轻松转化为低级图像编辑操作将带来无缝的用户体验。InstructPix2Pix等机制的引入,让我们离这一理想更近了一步。

然而,仍然存在一些挑战:

  1. 这些系统需要能处理大尺寸、高分辨率的原始图像。
  2. 扩散模型往往会在图像空间中发明或重新解释指令来执行修改。对于现实的图像编辑应用来说,这是不可接受的。

开放问题

  1. 扩大数据集规模会如何影响生成样本的质量?

  2. 对于更广泛的任务混合,增加训练时间会产生什么影响?

  3. 这种方法如何推广到更广泛的常见"指令微调"任务?

  4. 在训练过程中动态使用同一指令的不同变体是否有助于提高性能?

  5. 使用ControlNet训练设置会带来什么结果?

结论

本文介绍了Hugging Face团队在Stable Diffusion指令微调方面的探索。虽然预训练的InstructPix2Pix模型擅长遵循一般的图像编辑指令,但在面对更具体的指令时可能会失效。为了缓解这一问题,团队讨论了如何准备数据集以进一步微调InstructPix2Pix,并展示了初步结果。

尽管结果仍有提升空间,但这项工作为研究人员提供了一个基础,希望能激励他们进一步探索上述开放问题。通过不断改进,我们有望实现更智能、更精准的AI辅助图像处理系统,为创作者和设计师提供更强大的工具。

编辑推荐精选

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI助手AI工具AI写作工具AI辅助写作蛙蛙写作学术助手办公助手营销助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多