
在人工智能和计算机视觉领域,视频生成和预测技术正在飞速发展。然而,如何客观、全面地评估这些模型生成或预测的视频质量,一直是一个具有挑战性的问题。GitHub上的开源项目common_metrics_on_video_quality为这一难题提供了一个优雅的解决方案。该项目由开发者JunyaoHu创建,旨在提供一套易用、全面的视频质量评估工具。
common_metrics_on_video_quality项目的核心优势在于它集成了多种常用的视频质量评估指标,包括:
这些指标涵盖了从低级统计特征到高级感知特征的多个方面,能够全方位地评估视频质量。
多样化的FVD实现 项目支持两种基于PyTorch的FVD实现方法:来自VideoGPT和StyleGAN-V的实现。这两种方法的计算结果几乎相同,为用户提供了更多选择。
灵活的视频格式支持 无论是灰度视频还是RGB视频,该项目都能轻松处理。对于灰度视频,项 目会自动将其扩展为3通道,以确保与各种评估指标的兼容性。
详细的评估结果 不仅计算整体指标,还提供了逐帧的详细评估结果。例如,对于30帧的视频,项目会计算从第10帧到第30帧的FVD值,以及每一帧的PSNR、SSIM和LPIPS值及其标准差。
高效的批处理能力 支持批量处理多个视频,大大提高了评估效率。
以下是一个简单的使用示例,展示了如何使用该项目评估两组视频的质量:
import torch from calculate_fvd import calculate_fvd from calculate_psnr import calculate_psnr from calculate_ssim import calculate_ssim from calculate_lpips import calculate_lpips NUMBER_OF_VIDEOS = 8 VIDEO_LENGTH = 30 CHANNEL = 3 SIZE = 64 videos1 = torch.zeros(NUMBER_OF_VIDEOS, VIDEO_LENGTH, CHANNEL, SIZE, SIZE, requires_grad=False) videos2 = torch.ones(NUMBER_OF_VIDEOS, VIDEO_LENGTH, CHANNEL, SIZE, SIZE, requires_grad=False) device = torch.device("cuda") import json result = {} result['fvd'] = calculate_fvd(videos1, videos2, device, method='styleganv') result['ssim'] = calculate_ssim(videos1, videos2) result['psnr'] = calculate_psnr(videos1, videos2) result['lpips'] = calculate_lpips(videos1, videos2, device) print(json.dumps(result, indent=4))
这个例子展示了如何计算8个视频序列(每个包含30帧,尺寸为64x64的RGB视频)的质量指标。
评估结果以JSON格式返回,包含了丰富的信息:
这种详细的结果格式使研究人员能够深入分析视频质量随时间的变化,以及不同指标之间的关系。
lpips库。i3d_torchscript.pt或i3d_pretrained_400.pt并放入FVD文件夹。scipy==1.7.3或1.9.3,避免使用1.11.3版本,以防计算错误的FVD值。CUDA_VISIBLE_DEVICES=0环境变量。自发布以来,common_metrics_on_video_quality项目在GitHub上获得了191颗星和7个分支,显示出其在视频质量评估领域的影响力和受欢迎程度。项目的贡献者包括主要开发者JunyaoHu和nku-zhichengzhang,他们的努力使得这个工具不断完善和发展。
随着视频生成和预测技术的不断进步,common_metrics_on_video_quality项目也有望继续发展。未来可能的改进方向包括:
common_metrics_on_video_quality项目为视频质量评估提供了一个强大而灵活的工具集。无论是研究人员、开发者还是视频处理从业者,都能从这个项目中受益。随着项目的不断完善和社区的持续贡献,它有望成为视频质量评估领域的标准工具之一。
如果您正在从事视频生成、预测或处理相关的工作,不妨尝试使用common_metrics_on_video_quality项目,相信它能为您的研究或开发工作带来便利和洞见。同时,也欢迎对项目感兴趣的开发者加入贡献,共同推动这个开源工具的发展,为计算机视觉和人工智能领域的进步贡献一份力量。


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一 键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命 ,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号