在机器学习领域,类别不平衡问题一直是一个具有挑战性的研究方向。当数据集中不同类别的样本数量差异很大时,传统的机器学习算法往往会偏向于多数类,导致对少数类的预测性能较差。为了解决这一问题,研究人员提出了许多专门针对不平衡数据的学习算法,其中集成学习方法表现尤为突出。
imbalanced-ensemble(简称imbens)正是一个专门用于处理类别不平衡问题的集成学习Python库。它提供了一系列先进的集成不平衡学习算法实现,以及强大的评估和可视化功能,旨在帮助研究人员和工程师更便捷地开发和部署不平衡学习模型。
imbalanced-ensemble具有以下突出特点:
使用imbalanced-ensemble构建一个不平衡学习分类器只需寥寥数行代码:
from imbens.ensemble import SelfPacedEnsembleClassifier from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split # 生成不平衡数据集 X, y = make_classification(n_samples=1000, n_classes=3, n_informative=4, weights=[0.2, 0.3, 0.5], random_state=0) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42) # 训练SelfPacedEnsemble分类器 clf = SelfPacedEnsembleClassifier(random_state=0) clf.fit(X_train, y_train) # 预测 y_pred = clf.predict(X_test)
imbalanced-ensemble提供了强大的可视化工具ImbalancedEnsembleVisualizer,可以方便地对比不同集成算法的性能:
from imbens.ensemble import SelfPacedEnsembleClassifier, RUSBoostClassifier, EasyEnsembleClassifier from imbens.visualizer import ImbalancedEnsembleVisualizer from sklearn.tree import DecisionTreeClassifier # 训练多个集成分类器 init_kwargs = {'estimator': DecisionTreeClassifier()} ensembles = { 'spe': SelfPacedEnsembleClassifier(**init_kwargs).fit(X_train, y_train), 'rusboost': RUSBoostClassifier(**init_kwargs).fit(X_train, y_train), 'easyens': EasyEnsembleClassifier(**init_kwargs).fit(X_train, y_train), } # 创建可视化器 visualizer = ImbalancedEnsembleVisualizer().fit(ensembles=ensembles) # 绘制性能曲线 fig, axes = visualizer.performance_lineplot() # 绘制混淆矩阵 fig, axes = visualizer.confusion_matrix_heatmap()
imbalanced-ensemble支持灵活的训练日志配置,可以实时监控模型训练过程:
clf.fit(X_train, y_train, train_verbose={ 'granularity': 10, 'print_distribution': False, 'print_metrics': True, })
这将每训练10个基学习器输出一次性能指标,方便用户跟踪训练进度。
imbalanced-ensemble实现了多种主流的集成不平衡学习算法,大致可分为以下几类:
基于重采样的方法:
基于代 价敏感的方法:
兼容方法:
这些算法涵盖了不平衡学习领域的主要技术路线,为用户提供了丰富的选择。
imbalanced-ensemble为处理类别不平衡问题提供了一个全面而强大的工具集。它不仅实现了多种先进的集成不平衡学习算法,还提供了便捷的评估和可视化功能,大大简化了不平衡学习模型的开发和部署过程。无论是研究人员还是实践者,都可以从这个库中获益良多。
对于那些正在处理不平衡数据集的机器学习从业者来说,imbalanced-ensemble无疑是一个值得尝试的工具。它可以帮助用户快速实现和比较不同的不平衡学习策略,从而找到最适合特定问题的解决方案。
随着类别不平衡问题在现实世界中的普遍存在,imbalanced-ensemble这样的专业工具库必将发挥越来越重要的作用。我们期待看到更多研究者和开发者参与到这个项目中来,共同推动不平衡学习领域的发展。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号