在人工智能和机器学习领域,模型量化一直是一个重要的研究方向。随着模型规模的不断扩大,如何在有限的计算资源下高效部署大型模型成为了一个亟待解决的问题。近日,由Mobius Labs开发的Half-Quadratic Quantization (HQQ)技术为这一难题提供了一个创新的解决方案。
HQQ是一种快速且精确的模型量化器,其最大的特点是无需校准数据。这意味着即使是最大规模的模型,也可以在短短几分钟内完成量化。🚀 相比传统的量化方法,HQQ具有以下显著优势:
torch.compile的全面兼容,以加速推理和训练HQQ团队在语言和视觉模型上进行了详细的基准测试。根据他们的博客文章,HQQ在保持模型性能的同时,显著降低了模型的大小和计算需求。
在速度方面,使用axis=1的4比特模型可以利用优化的推理融合内核,如torchao的int4_gemm。这与gpt-fast项目使用的是相同的内核,根据基准测试,目前是最快的可用内核。此外,HQQ还支持Marlin内核,并致力于与torch.compile完全兼容,以进一步提高训练和推理速度。

对于初次使用HQQ的用户,建议从以下设置开始:
nbits=4, group_size=64, axis=1
这些设置在质量、VRAM使用和速度之间提供了良好的平衡。如果希望在相同VRAM使用下获得更好的结果,可以切换到axis=0并使用ATEN后端。对于更低比特(如nbits=2)的量化,应使用axis=0和较小的group-size,通过HQQ+添加低秩适配器,并使用小数据集进行微调。
HQQ的安装非常简单,首先确保您有与CUDA版本匹配的PyTorch 2版本,然后可以通过pip安装:
pip install hqq
要使用HQQ进行量化,只需替换线性层(torch.nn.Linear)即可:
from hqq.core.quantize import * # 量化设置 quant_config = BaseQuantizeConfig(nbits=4, group_size=64) # 替换线性层 hqq_layer = HQQLinear(your_linear_layer, quant_config=quant_config, compute_dtype=torch.float16, device='cuda', initialize=True, del_orig=True)
HQQ可以与Hugging Face的Transformers库无缝集成。以下是一个简单的示例:
from transformers import AutoModelForCausalLM, HqqConfig # 所有线性层将使用相同的量化配置 quant_config = HqqConfig(nbits=4, group_size=64) # 加载并量化模型 model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, device_map="cuda", quantization_config=quant_config )
HQQ允许为不同的层设置不同的量化配置,这为模型优化提供了更大的灵活性:
q4_config = {'nbits':4, 'group_size':64} q3_config = {'nbits':3, 'group_size':32} quant_config = HqqConfig(dynamic_config={ 'self_attn.q_proj':q4_config, 'self_attn.k_proj':q4_config, 'self_attn.v_proj':q4_config, 'self_attn.o_proj':q4_config, 'mlp.gate_proj':q3_config, 'mlp.up_proj' :q3_config, 'mlp.down_proj':q3_config, })
HQQ还支持参数高效微调(PEFT)训练。用户可以直接使用Hugging Face的peft库,或者使用HQQ提供的PEFT工具:
from hqq.core.peft import PeftUtils base_lora_params = {'lora_type':'default', 'r':32, 'lora_alpha':64, 'dropout':0.05, 'train_dtype':torch.float32} lora_params = {'self_attn.q_proj': base_lora_params, 'self_attn.k_proj': base_lora_params, 'self_attn.v_proj': base_lora_params, 'self_attn.o_proj': base_lora_params, 'mlp.gate_proj' : None, 'mlp.up_proj' : None, 'mlp.down_proj' : None} # 添加LoRA到线性/HQQ模块 PeftUtils.add_lora(model, lora_params)
HQQ为大型机器学习模型的量化提供了一个强大而灵活的解决方案。它不仅能显著减少模型的存储和计算需求,还能保持模型的性能。对于研究人员和工程师来说,HQQ提供了一种高效部署大型模型的新方法,有望推动AI技术在更多领域的应用和发展。
随着AI模型规模的不断增长,像HQQ这样的技术将在未来扮演越来越重要的角色。它不仅能够使更多人有机会使用和研究大型模型,还能推动AI技术向更节能、更环保的方向发展。我们期待看到HQQ在未来的进一步发展,以及它在各种应用场景中的表现。


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能 覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号