在当今数据驱动的商业环境中,准确的预测对于决策制定至关重要。然而,许多企业和组织面临的是具有层次结构的复杂时间序列数据,如产品类别、品牌或地理分组等。这就需要一种能够在不同层次之间保持一致性的预测方法。HierarchicalForecast应运而生,为解决这一挑战提供了强大的工具。
HierarchicalForecast是一个开源的Python库,专门用于分层时间序列预测。它提供了一系列reconciliation(协调)方法,可以确保不同层次的预测结果之间保持一致性。这个库的核心目标是为机器学习和统计建模领域提供可靠的基准和工具,促进分层预测研究的发展。
HierarchicalForecast提供了多种经典和创新的reconciliation方法:
经典方法:
替代方法:
概率一致性方法:
HierarchicalForecast旨在将统计和计量经济学方法与 机器学习技术结合起来。它为研究人员和实践者提供了一个平台,可以比较不同方法的性能,并开发新的算法。
该库集成了经过处理的公开数据集和各种评估指标,使得研究人员可以更容易地进行实验和比较不同方法的效果。
HierarchicalForecast提供了简洁的API,使用户可以轻松地应用各种reconciliation方法。同时,它的设计也考虑到了可扩展性,允许用户添加自定义的方法。
作为一个开源项目,HierarchicalForecast得到了活跃社区的支持。开发团队承诺持续维护和更新库,以适应不断发展的需求。
以下是一个简单的使用示例,展示了如何使用HierarchicalForecast进行预测和协调:
import numpy as np import pandas as pd from datasetsforecast.hierarchical import HierarchicalData from statsforecast.core import StatsForecast from statsforecast.models import AutoARIMA, Naive from hierarchicalforecast.core import HierarchicalReconciliation from hierarchicalforecast.methods import BottomUp, TopDown, MiddleOut # 加载数据 Y_df, S, tags = HierarchicalData.load('./data', 'TourismSmall') Y_df['ds'] = pd.to_datetime(Y_df['ds']) # 分割训练集和测试集 Y_test_df = Y_df.groupby('unique_id').tail(4) Y_train_df = Y_df.drop(Y_test_df.index) # 使用AutoARIMA进行基础预测 fcst = StatsForecast(df=Y_train_df, models=[AutoARIMA(season_length=4), Naive()], freq='Q', n_jobs=-1) Y_hat_df = fcst.forecast(h=4) # 使用不同的reconciliation方法 reconcilers = [ BottomUp(), TopDown(method='forecast_proportions'), MiddleOut(middle_level='Country/Purpose/State', top_down_method='forecast_proportions') ] hrec = HierarchicalReconciliation(reconcilers=reconcilers) Y_rec_df = hrec.reconcile(Y_hat_df=Y_hat_df, Y_df=Y_train_df, S=S, tags=tags)
这个例子展示了如何加载数据、进行基础预测,然后使用不同的reconciliation方法来协调预测结果。
HierarchicalForecast可以通过pip或conda安装:
pip install hierarchicalforecast
或
conda install -c conda-forge hierarchicalforecast
详细的文档和更多示例可以在HierarchicalForecast官方文档中找到。
HierarchicalForecast为分层时间序列预测提供了一个强大而灵活的解决方案。无论是研究人员还是实践者,都可以利用这个库来改进预测模型,确保不同层次的预测结果保持一致性。随着机器学习在时间序列预测领域的不断发展,HierarchicalForecast将继续发挥重要作用,推动这一领域的进步。
如果您正在处理复杂的分层时间序列数据,不妨尝试使用HierarchicalForecast。它可能会为您的预测任务带来新的洞察和改进。记得查看GitHub仓库以获取最新更新和贡献指南。让我们一起推动分层预测技术的发展,为更准确、更一致的决策提供支持。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号