GST-Tacotron是Google AI团队提出的一种端到端语音合成系统,在Tacotron的基础上引入了全局风格令牌(Global Style Tokens, GST)机制,实现了对语音风格的无监督建模、控制和迁移。该项目的主要特点包括:
这是GST-Tacotron的原始论文,详细介绍了模型的设计思路和实验结果。
这是一个PyTorch版本的GST-Tacotron实现,包含了模型训练和推理的完整代码。
这个页面提供了大量GST-Tacotron合成的音频样本,展示了模型在风格选择、风格缩放、风格迁移等方面的能力。
NVIDIA的OpenSeq2Seq框架中也实现了GST-Tacotron,这个教程详细介绍了如何使用该框架训练和推理GST-Tacotron模型。
要深入理解GST-Tacotron,建议按以下步骤学习:
通过以上资料和步骤,相信读者可以全面掌握GST-Tacotron的原理和应用。如果在学习过程中遇到问题,欢迎在相关项目的GitHub Issues中讨论交流。