近年来,Vision Transformer (ViT) 凭借其强大的长程依赖建模能力,在计算机视觉领域掀起了一场革命。然而,传统的多头自注意力机制(MHSA)仅能在单一粒度上捕捉 token 间的相关性,这在一定程度上限制了模型的表征能力。为了突破这一瓶颈,来自香港大学和香港中文大学的研究团队提出了一种创新的注意力机制 - Group-Mix Attention (GMA),并基于此开发出了强大的视觉骨干网络 GroupMixFormer。
Group-Mix Attention (GMA) 是 GroupMixFormer 的核心创新。与传统的自注意力不同,GMA 能够同时捕捉 token-to-token、token-to-group 和 group-to-group 三种不同粒度的相关性,从而大幅提升模型的表征能力。具体而言,GMA 的工作原理如下:
通过这种方式,GMA 能够在不同的组大小下捕捉多粒度的相关性,从而使模型获得更全面、更丰富的特征表示。
基于 GMA,研究团队设计了 GroupMixFormer 这一新型视觉骨干网络。与现有模型相比,GroupMixFormer 在参数量更少的情况下,在多个视觉任务上取得了优异的性能:
这些出色的结果充分证明了 GroupMixFormer 的强大性能和高效性。
为了方便研究人员和开发者使用 GroupMixFormer,项目团队在 GitHub 上开源了完整的代码实现。以下是使用 GroupMixFormer 的主要步骤:
首先,需要创建并激活一个 conda 虚拟环境:
conda create -n groupmixformer python=3.8 -y conda activate groupmixformer
然后安装 PyTorch、torchvision 等依赖库:
pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html pip install timm==0.4.12 tensorboardX six tensorboard ipdb yacs tqdm fvcore
对于图像分类任务,需要下载并解压 ImageNet 数据集,目录结构如下:
│path/to/imagenet/
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
以 GroupMixFormer-Small 为例,在单节点 8 GPU 上训练 300 轮的命令如下:
python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 1 --use_env train.py \ --data-path <Your data path> \ --batch-size 64 \ --output <Your target output path> \ --cfg ./configs/groupmixformer_small.yaml \ --model-type groupmixformer \ --model-file groupmixformer.py \ --tag groupmixformer_small
使用预训练权重对 GroupMixFormer-Small 进行评估的命令如下:
CUDA_VISIBLE_DEVICES=1 OMP_NUM_THREADS=1 python3 -m torch.distributed.launch --nproc_per_node 1 --nnodes 1 --use_env test.py \ --data-path <Your data path> \ --batch-size 64 \ --output <Your target output path> \ --cfg ./configs/groupmixformer_small.yaml \ --model-type groupmixformer \ --model-file groupmixformer.py \ --tag groupmixformer_small
研究团队提供了一系列预训练的 GroupMixFormer 模型,适用于不同的应用场景:
模型名称 | 输入分辨率 | Top-1 准确率 | 参数量 | FLOPs |
---|---|---|---|---|
GroupMixFormer-M | 224x224 | 79.6% | 5.7M | 1.4G |
GroupMixFormer-T | 224x224 | 82.6% | 11.0M | 3.7G |
GroupMixFormer-S | 224x224 | 83.4% | 22.4M | 5.2G |
GroupMixFormer-B | 224x224 | 84.7% | 45.8M | 17.6G |
GroupMixFormer-L | 224x224 | 85.0% | 70.3M | 36.1G |
这些预训练模型可以直接用于图像分类任务,也可以作为其他下游任务(如目标检测、语义分割)的骨干网络。
GroupMixFormer 的提出为视觉 Transformer 的发展开辟了新的方向。通过引入多粒度的相关性建模,GroupMixFormer 不仅提升了模型性能,还为解释模型内部工作机制提供了新的视角。未来,Group-Mix Attention 机制有望在更多领域发挥作用,如自然语言处理、多模态学习等。
此外,GroupMixFormer 的高效性也为部署大规模视觉模型提供了新的可能。随着硬件能力的不断提升,我们可以期待看到基于 GroupMixFormer 的更大规模模型,以及在更多实际应用中的落地。
总的来说,GroupMixFormer 代表了视觉 Transformer 领域的一个重要进展,为提升计算机视觉系统的性能和效率提供了新的思路。我们期待看到更多基于 GroupMixFormer 的创新应用,以及它在推动人工智能技术发展中发挥的重要作用。
最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。
像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质 和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地 解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务 人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号