近年来,深度学习在计算机视觉、自然语言处理、语音识别等多个领域取得了突破性进展。然而,随着模型规模的不断扩大,深度学习模型的参数量、推理延迟和训练资源消耗也呈指数级增长。如何在保证模型性能的同时提高模型效率,已成为学术界和工业界共同关注的重要问题。
本文全面综述了高效深度学习领域的研究进展,主要涵盖以下几个方面:
网络压缩旨在减少深度神经网络的参数量和计算量,主要包括以下技术:
剪枝(Pruning):去除网络中不重要的连接或神经元。代表工作有:
量化(Quantization):使用低比特表示网络参数和激活值。代表工作有:
低秩分解:利用矩阵分解降低模型复杂度。代表工作有:
知识蒸馏通过将大型教师模型的知识转移到小型学生模型中,实现模型压缩。代表工作有:
通过精心设计网络结构,提高模型效率。代表工作有:
利用自动化方法搜索高效的网络结构。代表工作有:
根据输入动态调整网络计算量。代表工作有:
此外,本文还讨论了模型量化、联邦学习、模型编译等相关技术,以及高效深度学习在移动端和嵌入式设备上的应用。
高效深度学习是一个快速发展的研究领域,涉及机器学习、计算机体系结构、编译原理等多个学科。未来的研究方向包括:设计更高效的网络结构、开发自动化的模型压缩技术、探索新型的硬件架构等。我们期待这一领域能够推动深度学习技术在更广泛的场景中落地应用,为人工智能的发展做出重要贡献。

高效深度学习概览图
参考文献:
[1] Han S, Mao H, Dally W J. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding[J]. arXiv preprint arXiv:1510.00149, 2015.
[2] Li H, Kadav A, Durdanovic I, et al. Pruning filters for efficient convnets[J]. arXiv preprint arXiv:1608.08710, 2016.
[3] He Y, Zhang X, Sun J. Channel pruning for accelerating very deep neural networks[C]//Proceedings of the IEEE international conference on computer vision. 2017: 1389-1397.
[4] Courbariaux M, Bengio Y, David J P. Binaryconnect: Training deep neural networks with binary weights during propagations[J]. Advances in neural information processing systems, 2015, 28.
[5] Hubara I, Courbariaux M, Soudry D, et al. Binarized neural networks[J]. Advances in neural information processing systems, 2016, 29.
[6] Zhou A, Yao A, Guo Y, et al. Incremental network quantization: Towards lossless CNNs with low-precision weights[J]. arXiv preprint arXiv:1702.03044, 2017.
[7] Jaderberg M, Vedaldi A, Zisserman A. Speeding up convolutional neural networks with low rank expansions[J]. arXiv preprint arXiv:1405.3866, 2014.
[8] Zhang X, Zou J, He K, et al. Accelerating very deep convolutional networks for classification and detection[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 38(10): 1943-1955.
[9] Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network[J]. arXiv preprint arXiv:1503.02531, 2015.
[10] Romero A, Ballas N, Kahou S E, et al. Fitnets: Hints for thin deep nets[J]. arXiv preprint arXiv:1412.6550, 2014.
[11] Zagoruyko S, Komodakis N. Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer[J]. arXiv preprint arXiv:1612.03928, 2016.
[12] Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.
[13] Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 4510-4520.
[14] Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 6848-6856.
[15] Ma N, Zhang X, Zheng H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 116-131.
[16] Tan M, Le Q. Efficientnet: Rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning. PMLR, 2019: 6105-6114.
[17] Zoph B, Vasudevan V, Shlens J, et al. Learning transferable architectures for scalable image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 8697-8710.
[18] Liu H, Simonyan K, Yang Y. Darts: Differentiable architecture search[J]. arXiv preprint arXiv:1806.09055, 2018.
[19] Tan M, Chen B, Pang R, et al. Mnasnet: Platform-aware neural architecture search for mobile[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 2820-2828.
[20] Huang G, Chen D, Li T, et al. Multi-scale dense networks for resource efficient image classification[J]. arXiv preprint arXiv:1703.09844, 2017.
[21] Wang X, Yu F, Dou Z Y, et al. Skipnet: Learning dynamic routing in convolutional networks[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 409-424.
[22] Yang Z, Wang Y, Chen X, et al. Convolutional neural networks with conditional computation[J]. arXiv preprint arXiv:1904.12282, 2019.


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批 量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号