Denoising Vision Transformers: 消除ViT特征图中的伪影

RayRay
Vision Transformers图像去噪特征图密集识别任务ECCV 2024Github开源项目

引言

Vision Transformer (ViT)自问世以来在计算机视觉领域取得了巨大成功,在多个任务上超越了卷积神经网络(CNN)的表现。然而,研究人员发现ViT的特征图中存在一些不可忽视的问题 - 网格状的伪影,这些伪影严重影响了ViT在一些下游密集预测任务(如语义分割、深度估计等)中的性能。为了解决这一问题,来自南加州大学、康奈尔大学等机构的研究人员提出了Denoising Vision Transformers (DVT)方法。

DVT:消除ViT特征图中的伪影

DVT的核心思想是通过一个两阶段的去噪过程,有效地消除ViT特征图中的网格状伪影。这种方法不需要重新训练已有的预训练ViT模型,可以直接应用于任何ViT架构。

第一阶段:单图像去噪

在第一阶段,DVT采用了一种基于神经场(neural field)的单图像优化方法。其核心思想是将ViT的输出特征分解为三个部分:

  1. F(x): 表示去噪后的语义特征
  2. G(position): 表示跨视图共享的伪影
  3. h(x, position): 建模位置和语义内容之间的相互依赖关系

通过最小化重建误差和跨视图一致性损失,DVT可以有效地分离出干净的语义特征F(x)。这种单图像优化过程为离线应用提供了无伪影的特征估计。

第二阶段:训练通用去噪器

在第二阶段,研究人员利用第一阶段得到的大量去噪前后的特征对{y, F},训练了一个轻量级的Transformer块作为去噪器网络D。该网络可以直接从原始ViT输出y预测无噪声特征F,即F = D(y)。这个通用去噪器具有良好的泛化能力,可以应用于未见过的图像。

DVT的优势和应用

DVT方法具有以下几个显著优势:

  1. 无需重新训练:DVT可以直接应用于现有的预训练ViT模型,无需昂贵的重新训练过程。

  2. 通用性强:DVT可以应用于各种ViT架构,包括DINO、DeiT-III、EVA02、CLIP、DINOv2等。

  3. 性能提升显著:在多个下游任务中,DVT consistently提升了ViT的性能。

研究人员在多个具有代表性的数据集上评估了DVT的效果,包括:

  • PASCAL VOC 2012 (语义分割)
  • ADE20K (语义分割)
  • NYU Depth V2 (深度估计)
  • PASCAL VOC 2007+2012 (目标检测)

实验结果表明,DVT在所有这些任务上都取得了显著的性能提升。以DINOv2为例:

  • 在PASCAL VOC 2012语义分割任务上,mIoU从83.60%提升到84.84%
  • 在ADE20K语义分割任务上,mIoU从47.29%提升到48.66%
  • 在NYU Depth V2深度估计任务上,相对误差从0.1238降低到0.1200
  • 在PASCAL VOC目标检测任务上,mAP从81.4%提升到81.9%

这些结果充分证明了DVT在消除ViT特征图伪影方面的有效性,以及它在提升ViT下游任务性能方面的巨大潜力。

DVT的工作原理可视化

为了更直观地理解DVT的工作原理,研究人员提供了一系列可视化结果。以DINOv2 ViT-Base模型为例:

DVT工作原理示例

从左到右,各列分别表示:

  1. 输入裁剪图像
  2. 原始DINOv2输出
  3. 原始输出的KMeans聚类结果
  4. 原始输出的L2特征范数
  5. 原始输出中中心patch与其他patch的相似度
  6. DVT去噪后的输出
  7. 去噪输出的KMeans聚类结果
  8. 去噪输出的L2特征范数
  9. 去噪输出中中心patch与其他patch的相似度
  10. 分解出的共享伪影
  11. 共享伪影的L2范数
  12. 真实残差误差
  13. 预测的残差项
  14. 共享伪影和预测残差项的组合

从这些可视化结果中,我们可以清晰地看到DVT如何有效地消除了特征图中的网格状伪影,使得特征表示更加清晰和语义一致。

DVT的潜在应用

DVT的成功不仅仅局限于提升ViT在特定任务上的性能,它还揭示了ViT特征中潜在的一些有趣属性:

  1. 对象突出性:通过对去噪后特征进行PCA分析,研究人员发现第二主成分能很好地捕捉图像中主要对象的突出性。这一发现可能对无监督目标检测和分割任务有重要启示。

  2. 特征范数作为对象指示器:去噪后特征的L2范数被发现可以作为一个有效的对象指示器,这在原始ViT特征中并不明显。

  3. 改进的特征聚类:去噪后的特征在KMeans聚类时表现出更好的语义一致性,这对于无监督语义分割等任务可能有重要价值。

这些发现为ViT在更广泛的计算机视觉任务中的应用开辟了新的可能性。

结论与展望

Denoising Vision Transformers (DVT)为解决ViT特征图中的伪影问题提供了一个简单而有效的解决方案。通过消除这些伪影,DVT不仅显著提升了ViT在多个下游任务中的性能,还揭示了ViT特征中一些潜在的有趣属性。

这项研究工作提醒我们,尽管ViT在许多任务上取得了令人印象深刻的性能,但其内部表示仍然存在一些问题。DVT的成功也鼓励我们重新评估ViT的设计,特别是在位置编码的使用方面。

未来的研究方向可能包括:

  1. 探索DVT在更多视觉任务中的应用,如图像生成、视频理解等。
  2. 研究如何将DVT的思想整合到ViT的训练过程中,从源头上减少伪影的产生。
  3. 利用DVT揭示的ViT特征属性,开发新的无监督或自监督学习方法。

总的来说,DVT为提升ViT的性能和可解释性开辟了一个新的研究方向,有望推动计算机视觉领域的进一步发展。研究人员已经公开了DVT的代码和模型检查点,这将有助于更多研究者和开发者在此基础上进行进一步的探索和应用。

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多