DeepRobust是一个基于PyTorch开发的对抗性机器学习库,专注于为图像和图数据提供攻击和防御方法。该项目由密歇根州立大学数据科学与工程系(DSE-MSU)开发和维护,旨在帮助研究人员和开发者构建更加鲁棒的机器学习模型。

DeepRobust的主要特点包括:
DeepRobust支持通过pip安装或从源代码安装。基本环境要求如下:
通过pip安装:
pip install deeprobust
从源代码安装:
git clone https://github.com/DSE-MSU/DeepRobust.git cd DeepRobust python setup.py install
如果安装依赖项遇到困难,可以尝试:
python setup_empty.py install
这将只安装DeepRobust核心库,而不安装其他依赖包。
DeepRobust主要包含两个核心模块:图像模块和图模块。
图像模块提供了针对图像数据的攻击和防御方法。主要功能包括:
以下是一个使用PGD(Projected Gradient Descent)攻击的简单示例:
from deeprobust.image.attack.pgd import PGD from deeprobust.image.config import attack_params from deeprobust.image.utils import download_model import torch import deeprobust.image.netmodels.resnet as resnet from torchvision import transforms, datasets # 下载预训练模型 URL = "https://github.com/I-am-Bot/deeprobust_model/raw/master/CIFAR10_ResNet18_epoch_20.pt" download_model(URL, "$MODEL_PATH$") # 加载模型 model = resnet.ResNet18().to('cuda') model.load_state_dict(torch.load("$MODEL_PATH$")) model.eval() # 准备数据 transform_val = transforms.Compose([transforms.ToTensor()]) test_loader = torch.utils.data.DataLoader( datasets.CIFAR10('deeprobust/image/data', train=False, download=True, transform=transform_val), batch_size=10, shuffle=True) x, y = next(iter(test_loader)) x = x.to('cuda').float() # 执行PGD攻击 adversary = PGD(model, 'cuda') Adv_img = adversary.generate(x, y, **attack_params['PGD_CIFAR10'])
图模块提供了针对图数据的攻击和防御方法。主要功能包括:
以下是一个使用Metattack攻击图神经网络的示例:
import torch import numpy as np from deeprobust.graph.data import Dataset from deeprobust.graph.defense import GCN from deeprobust.graph.global_attack import Metattack # 加载数据集 data = Dataset(root='/tmp/', name='cora', setting='nettack') adj, features, labels = data.adj, data.features, data.labels idx_train, idx_val, idx_test = data.idx_train, data.idx_val, data.idx_test idx_unlabeled = np.union1d(idx_val, idx_test) # 设置代理模型 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") surrogate = GCN(nfeat=features.shape[1], nclass=labels.max().item()+1, nhid=16, with_relu=False, device=device) surrogate = surrogate.to(device) surrogate.fit(features, adj, labels, idx_train) # 执行Metattack model = Metattack(model=surrogate, nnodes=adj.shape[0], feature_shape=features.shape, device=device) model = model.to(device) perturbations = int(0.05 * (adj.sum() // 2)) model.attack(features, adj, labels, idx_train, idx_unlabeled, perturbations, ll_constraint=False) modified_adj = model.modified_adj
DeepRobust团队一直在积极更新和改进这个库。以下是一些最近的重要更新:
以下是使用FGSM(Fast Gradient Sign Method)生成的对抗样本示例:

左图为原始图像,分类为6;右图为对抗样本,被错误分类为4。
DeepRobust为研究人员和开发者提供了一个强大而灵活的工具,用于探索和改进机器学习模型的鲁棒性。通过提供丰富的攻击和防御方法,DeepRobust有助于构建更加安全可靠的AI系统。随着对抗性机器学习领域的不断发展,DeepRobust也在持续更新和完善,为用户提供最新的研究成果和工具。
无论您是研究人员还是实践者,DeepRobust都是一个值得尝试的库。它不仅可以帮助您理解和实现各种对抗性攻击和防御方法,还可以为您的研究或项目提供有力支持。我们鼓励读者访问DeepRobust的GitHub页面和文档,深入了解更多细节并开始使用这个强大的工具。
通过使用DeepRobust,我们可以更好地理解和应对机器学习模型面临的安全挑战,为构建更加鲁棒和可靠的AI系统贡献力量。🛡️🔬🚀


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度 。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号