CrossFormer是由浙江大学和腾讯AI Lab联合提出的一种新型视觉Transformer模型。它的核心创新在于引入了跨尺度注意力机制,能够有效地处理不同尺度的视觉特征,从而在多个视觉任务上取得了优异的性能。
CrossFormer的主要特点包括:
跨尺度嵌入层(CEL):将输入嵌入与多尺度特征混合。
长短距离注意力机制(L/SDA):将嵌入分组,只在组内计算自注意力。
动态位置偏置(DPB):使相对位置偏置适用于可变图像大小。
渐进式分组策略(PGS):在性能和计算成本之间取得更好的平衡。
激活冷却层(ACL):抑制残差流中激活幅度的急剧增长。
这些创新设计使得CrossFormer能够有效地处理跨尺度的视觉信息,在图像分类、目标检测和语义分割等多个视觉任务中都表现出色。
跨尺度嵌入层是CrossFormer的一个关键组件。它的主要作用是将输入的嵌入与多个尺度的特征进行混合。这种设计使得模型能够捕捉到不同尺度的视觉信息,从而更好地理解图像的内容。
如上图所示,CEL通过对输入特征进行多尺度处理,然后将这些不同尺度的特征与原始输入进行融合,最终得到包含多尺度信息的嵌入表示。
长短距离注意力机制是CrossFormer的另一个重要创新。它的核心思想是将所有的嵌入分成若干组,然后只在组内计算自注意力。这种设计有以下几个优点:
动态位置偏置模块的设计目的是使相对位置偏置能够适用于可变大小的图像输入。这一特性使得CrossFormer在处理不同分辨率的图像时具有更好的灵活性和适应性。
渐进式分组策略是CrossFormer++中引入的改进。它通过动态调整注意力计算中的分组大小,在模型性能和计算成本之间取得了更好的平衡。这使得CrossFormer++能够在保持高性能的同时,更好地适应不同的硬件环境和计算资源限制。
激活冷却层是为了解决深层Transformer网络中常见的激活值剧烈增长问题。通过抑制残差流中激活幅度的急剧增长,ACL有助于稳定模型的训练过程,提高模型的泛化能力。
上图展示了CrossFormer++的整体架构,包括了PGS和ACL等改进设计。
CrossFormer在多个视觉任务上都展现出了优异的性能,包括图像分类、目标检测和语义分割等。以下是CrossFormer在不同任务上的具体表现:
在ImageNet-1K数据集上的图像分类任务中,CrossFormer及其改进版CrossFormer++都取得了优秀的结果:
模型 | 参数量 | FLOPs | Top-1准确率 |
---|---|---|---|
CrossFormer-S | 30.7M | 4.9G | 82.5% |
CrossFormer++-S | 23.3M | 4.9G | 83.2% |
CrossFormer-B | 52.0M | 9.2G | 83.4% |
CrossFormer++-B | 52.0M | 9.5G | 84.2% |
CrossFormer-L | 92.0M | 16.1G | 84.0% |
CrossFormer++-L | 92.0M | 16.6G | 84.7% |
可以看到,CrossFormer++在各个模型规模上都取得了明显的性能提升,尤其是在参数量相近的情况下,准确率有了显著提高。
在COCO 2017数据集上的目标检测任务中,CrossFormer作为主干网络也展现出了优异的性能:
主干网络 | 检测头 | 学习策略 | 参数量 | FLOPs | box AP | mask AP |
---|---|---|---|---|---|---|
CrossFormer-S | RetinaNet | 1x | 40.8M | 282.0G | 44.4 | - |
CrossFormer++-S | RetinaNet | 1x | 40.8M | 282.0G | 45.1 | - |
CrossFormer-S | Mask R-CNN | 1x | 50.2M | 301.0G | 45.4 | 41.4 |
CrossFormer++-S | Mask R-CNN | 1x | 43.0M | 287.4G | 46.4 | 42.1 |
CrossFormer++不仅在检测性能上有所提升,而且在某些情况下还减少了参数量和计算量,显示出了更高的效率。
在ADE20K数据集上的语义分割任务中,CrossFormer同样表现出色:
主干网络 | 分割头 | 迭代次数 | 参数量 | FLOPs | mIoU |
---|---|---|---|---|---|
CrossFormer-S | FPN | 80K | 34.3M | 209.8G | 46.4 |
CrossFormer++-S | FPN | 80K | 27.1M | 199.5G | 47.4 |
CrossFormer-S | UPerNet | 160K | 62.3M | 979.5G | 47.6 |
CrossFormer++-S | UPerNet | 160K | 53.1M | 963.5G | 49.4 |
在语义分割任务中,CrossFormer++不仅提高了分割精度,还在大多数情况下减少了模型的参数量和计算量。
CrossFormer的设计理念和优异性能使其 在计算机视觉领域具有广泛的应用前景:
通用视觉任务:CrossFormer在图像分类、目标检测和语义分割等多个基础视觉任务上都表现出色,可以作为一个通用的视觉主干网络。
多尺度场景理解:得益于其跨尺度注意力机制,CrossFormer特别适合处理需要同时关注局部细节和全局结构的场景,如医疗图像分析、遥感图像解释等。
视频分析:CrossFormer的长短距离注意力机制为处理视频序列提供了潜在的优势,可能在视频分类、动作识别等任务中有良好表现。
自动驾驶:目标检测和语义分割是自动驾驶中的关键任务,CrossFormer的高性能使其有望应用于自动驾驶的感知系统。
移动端AI:CrossFormer++通过渐进式分组策略实现了更好的效率权衡,为将高性能视觉模型部署到资源受限的移动设备提供了可能。
CrossFormer通过创新的跨尺度注意力机制,成功地解决了现有视觉Transformer在处理不同尺度特征时的局限性。其在多个视觉任务上的优异表现,证明了这种设计的有效性和潜力。随着CrossFormer++的进一步改进,我们可以期待这种架构在更广泛的计算机视觉应用中发挥重要作用。
未来,研究人员可能会探索将CrossFormer的核心思想扩展到其他领域,如自然语言处理或多模态学习。同时,进一步优化模型的效率和可解释性也是值得关注的方向。随着技术的不断进步,我们有理由相信,像CrossFormer这样的创新模型将继续推动人工智能和计算机视觉领域的发展,为更多实际应用场景带来新的可能性。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的 用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语 言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助 力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号