在自动驾驶和机器人技术快速发展的今天,3D目标检测作为一项核心技术正受到越来越多的关注。然而,3D目标检测模型通常计算量巨大,难以在实际应用中实现实时处理。为了解决这一问题,研究人员开发了BEVFormer_tensorrt项目,旨在通过TensorRT加速和优化BEV(Bird's Eye View)3D目标检测模型的推理过程。
BEVFormer_tensorrt是一个专注于将BEV 3D目标检测模型(如BEVFormer、BEVDet等)部署到TensorRT平台上的开源项目。该项目不仅支持FP32/FP16/INT8等多种精度的推理,还实现了一系列自定义TensorRT插件,以进一步提升模型的推理速度和内存效率。
多精度支持:项目支持FP32、FP16和INT8三种精度的推理,可以根据实际需求在精度和速度之间进行权衡。
自定义TensorRT插件:为了优化BEVFormer在TensorRT上的推理性能,项目实现了多个支持nv_half、nv_half2和int8的TensorRT插件。这些插件包括:
显著的性能提升:通过使用自定义插件和INT8量化,BEVFormer base模型的推理速度提升了5倍以上,同时模型大小减少了90%以上,GPU内存使用降低了80%以上。
广泛的模型支持:除了BEVFormer,项目还支持BEVDet等其他BEV 3D目标检测模型,以及MMDetection中的常见2D目标检测模型(如YOLOx和CenterNet)。
为了直观展示BEVFormer_tensorrt的优势,我们来看一下BEVFormer base模型在不同配置下的性能对比:
配置 | NDS/mAP | FPS | 模型大小(MB) | GPU内存(MB) |
---|---|---|---|---|
PyTorch原始版本 | 0.517/0.416 | 2.4 | 265 | 5435 |
TensorRT(FP32) | 0.517/0.416 | 3.0 | 292 | 5715 |
TensorRT(FP16) | 0.517/0.416 | 4.9 | 148 | 3417 |
TensorRT(FP16/INT8) | 0.514/0.413 | 8.0 | 131 | 2429 |
从表中可以看出,使用TensorRT和自定义插件后,BEVFormer base模型在保持准确率基本不变的情况下,推理速度从2.4 FPS提升到了8.0 FPS,提升了233%。同时,模型大小从265MB减少到131MB,GPU内存使用从5435MB降低到2429MB。这些改进对于在实际应用中部署BEV 3D目标检测模型具有重要意义。
BEVFormer_tensorrt的安装过程相对复杂,需要配置CUDA、cuDNN、TensorRT等环境。项目提供了两种安装方式:Docker和从源码安装。对于大多数用户来说,使用Docker是更简单和推荐的方式。
以下是使用Docker安装的基本步骤:
git clone git@github.com:DerryHub/BEVFormer_tensorrt.git cd BEVFormer_tensorrt
docker build -t trt85 -f docker/Dockerfile .
docker run -it --gpus all -v ${PROJECT_DIR}:/workspace/BEVFormer_tensorrt/ \ -v /path/to/can_bus:/workspace/BEVFormer_tensorrt/data/can_bus \ -v /path/to/coco:/workspace/BEVFormer_tensorrt/data/coco \ -v /path/to/nuscenes:/workspace/BEVFormer_tensorrt/data/nuscenes \ --shm-size 8G trt85 /bin/bash
cd /workspace/BEVFormer_tensorrt/TensorRT/build cmake .. -DCMAKE_TENSORRT_PATH=/usr make -j$(nproc) make install
BEVFormer_tensorrt提供了一系列脚本,用于将PyTorch模型转换为ONNX格式,然后再转换为TensorRT引擎。以BEVFormer base模型为例,转换和评估的步骤如下:
sh samples/bevformer/plugin/base/pth2onnx.sh -d ${gpu_id}
sh samples/bevformer/plugin/base/onnx2trt_fp16.sh -d ${gpu_id}
sh samples/bevformer/plugin/base/trt_evaluate_fp16.sh -d ${gpu_id}
通过这些步骤,用户可以轻松地将BEVFormer模型部署到TensorRT上,并验证其性能和准确率。
BEVFormer_tensorrt项目为BEV 3D目标检测模型的实际应用提供了一个高效的部署方案。通过利用TensorRT的硬件加速能力和自定义优化插件,该项目显著提高了模型的推理速度,同时大幅降低了内存占用和模型大小。这些改进使得在资源受限的嵌入式设备上部署复杂的3D目标检测模型成为可能。
未来,BEVFormer_tensorrt项目可能会继续优化现有插件的性能,并支持更多的BEV 3D目标检测模型。同时,随着硬件技术的进步和新的优化技术的出现,我们可以期待BEV 3D目标检测在实时性和资源效率方面取得进一步的突破。
对于自动驾驶、机器人导航等领域的开发者和研究人员来说,BEVFormer_tensorrt无疑是一个值得关注和尝试的项目。它不仅提供了现成的部署方案,也为如何优化大型视觉模型以适应实际应用需求提供了宝贵的经验和思路。
总的来说,BEVFormer_tensorrt代表了计算机视觉领域中模型优化和部署的一个重要方向。随着3D感知技术在各个领域的广泛应用,类似的优化工作将变得越来越重要,为推动自动驾驶和机器人技术的发展做出重要贡献。
一键生 成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号