parser

parser

结构化预测和自然语言处理的Python工具包

SuPar是一个专注于结构化预测的Python库,实现了多种先进的句法和语义解析器。支持依存句法分析、成分句法分析和语义依存分析等任务,提供超过19种语言的预训练模型。此外,SuPar还包含多种经典结构化预测算法的高效实现。该库支持GPU加速,设计简洁易用,适用于自然语言处理研究和生产应用。

SuPar结构化预测自然语言处理句法分析语义分析Github开源项目

:rocket: SuPar

build docs release downloads LICENSE

A Python package designed for structured prediction, including reproductions of many state-of-the-art syntactic/semantic parsers (with pretrained models for more than 19 languages),

and highly-parallelized implementations of several well-known structured prediction algorithms.[^1]

Installation

You can install SuPar via pip:

$ pip install -U supar

or from source directly:

$ pip install -U git+https://github.com/yzhangcs/parser

The following requirements should be satisfied:

Usage

You can download the pretrained model and parse sentences with just a few lines of code:

>>> from supar import Parser # if the gpu device is available # >>> torch.cuda.set_device('cuda:0') >>> parser = Parser.load('dep-biaffine-en') >>> dataset = parser.predict('I saw Sarah with a telescope.', lang='en', prob=True, verbose=False)

By default, we use stanza internally to tokenize plain texts for parsing. You only need to specify the language code lang for tokenization.

The call to parser.predict will return an instance of supar.utils.Dataset containing the predicted results. You can either access each sentence held in dataset or an individual field of all results. Probabilities can be returned along with the results if prob=True.

>>> dataset[0] 1 I _ _ _ _ 2 nsubj _ _ 2 saw _ _ _ _ 0 root _ _ 3 Sarah _ _ _ _ 2 dobj _ _ 4 with _ _ _ _ 2 prep _ _ 5 a _ _ _ _ 6 det _ _ 6 telescope _ _ _ _ 4 pobj _ _ 7 . _ _ _ _ 2 punct _ _ >>> print(f"arcs: {dataset.arcs[0]}\n" f"rels: {dataset.rels[0]}\n" f"probs: {dataset.probs[0].gather(1,torch.tensor(dataset.arcs[0]).unsqueeze(1)).squeeze(-1)}") arcs: [2, 0, 2, 2, 6, 4, 2] rels: ['nsubj', 'root', 'dobj', 'prep', 'det', 'pobj', 'punct'] probs: tensor([1.0000, 0.9999, 0.9966, 0.8944, 1.0000, 1.0000, 0.9999])

SuPar also supports parsing from tokenized sentences or from file. For BiLSTM-based semantic dependency parsing models, lemmas and POS tags are needed.

>>> import os >>> import tempfile # if the gpu device is available # >>> torch.cuda.set_device('cuda:0') >>> dep = Parser.load('dep-biaffine-en') >>> dep.predict(['I', 'saw', 'Sarah', 'with', 'a', 'telescope', '.'], verbose=False)[0] 1 I _ _ _ _ 2 nsubj _ _ 2 saw _ _ _ _ 0 root _ _ 3 Sarah _ _ _ _ 2 dobj _ _ 4 with _ _ _ _ 2 prep _ _ 5 a _ _ _ _ 6 det _ _ 6 telescope _ _ _ _ 4 pobj _ _ 7 . _ _ _ _ 2 punct _ _ >>> path = os.path.join(tempfile.mkdtemp(), 'data.conllx') >>> with open(path, 'w') as f: ... f.write('''# text = But I found the location wonderful and the neighbors very kind. 1\tBut\t_\t_\t_\t_\t_\t_\t_\t_ 2\tI\t_\t_\t_\t_\t_\t_\t_\t_ 3\tfound\t_\t_\t_\t_\t_\t_\t_\t_ 4\tthe\t_\t_\t_\t_\t_\t_\t_\t_ 5\tlocation\t_\t_\t_\t_\t_\t_\t_\t_ 6\twonderful\t_\t_\t_\t_\t_\t_\t_\t_ 7\tand\t_\t_\t_\t_\t_\t_\t_\t_ 7.1\tfound\t_\t_\t_\t_\t_\t_\t_\t_ 8\tthe\t_\t_\t_\t_\t_\t_\t_\t_ 9\tneighbors\t_\t_\t_\t_\t_\t_\t_\t_ 10\tvery\t_\t_\t_\t_\t_\t_\t_\t_ 11\tkind\t_\t_\t_\t_\t_\t_\t_\t_ 12\t.\t_\t_\t_\t_\t_\t_\t_\t_ ''') ... >>> dep.predict(path, pred='pred.conllx', verbose=False)[0] # text = But I found the location wonderful and the neighbors very kind. 1 But _ _ _ _ 3 cc _ _ 2 I _ _ _ _ 3 nsubj _ _ 3 found _ _ _ _ 0 root _ _ 4 the _ _ _ _ 5 det _ _ 5 location _ _ _ _ 6 nsubj _ _ 6 wonderful _ _ _ _ 3 xcomp _ _ 7 and _ _ _ _ 6 cc _ _ 7.1 found _ _ _ _ _ _ _ _ 8 the _ _ _ _ 9 det _ _ 9 neighbors _ _ _ _ 11 dep _ _ 10 very _ _ _ _ 11 advmod _ _ 11 kind _ _ _ _ 6 conj _ _ 12 . _ _ _ _ 3 punct _ _ >>> con = Parser.load('con-crf-en') >>> con.predict(['I', 'saw', 'Sarah', 'with', 'a', 'telescope', '.'], verbose=False)[0].pretty_print() TOP | S _____________|______________________ | VP | | _________|____ | | | | PP | | | | ____|___ | NP | NP | NP | | | | | ___|______ | _ _ _ _ _ _ _ | | | | | | | I saw Sarah with a telescope . >>> sdp = Parser.load('sdp-biaffine-en') >>> sdp.predict([[('I','I','PRP'), ('saw','see','VBD'), ('Sarah','Sarah','NNP'), ('with','with','IN'), ('a','a','DT'), ('telescope','telescope','NN'), ('.','_','.')]], verbose=False)[0] 1 I I PRP _ _ _ _ 2:ARG1 _ 2 saw see VBD _ _ _ _ 0:root|4:ARG1 _ 3 Sarah Sarah NNP _ _ _ _ 2:ARG2 _ 4 with with IN _ _ _ _ _ _ 5 a a DT _ _ _ _ _ _ 6 telescope telescope NN _ _ _ _ 4:ARG2|5:BV _ 7 . _ . _ _ _ _ _ _

Training

To train a model from scratch, it is preferred to use the command-line option, which is more flexible and customizable. Below is an example of training Biaffine Dependency Parser:

$ python -m supar.cmds.dep.biaffine train -b -d 0 -c dep-biaffine-en -p model -f char

Alternatively, SuPar provides some equivalent command entry points registered in setup.py: dep-biaffine, dep-crf2o, con-crf and sdp-biaffine, etc.

$ dep-biaffine train -b -d 0 -c dep-biaffine-en -p model -f char

To accommodate large models, distributed training is also supported:

$ python -m supar.cmds.dep.biaffine train -b -c dep-biaffine-en -d 0,1,2,3 -p model -f char

You can consult the PyTorch documentation and tutorials for more details.

Evaluation

The evaluation process resembles prediction:

# if the gpu device is available # >>> torch.cuda.set_device('cuda:0') >>> Parser.load('dep-biaffine-en').evaluate('ptb/test.conllx', verbose=False) loss: 0.2393 - UCM: 60.51% LCM: 50.37% UAS: 96.01% LAS: 94.41%

See examples for more instructions on training and evaluation.

Performance

SuPar provides pretrained models for English, Chinese and 17 other languages. The tables below list the performance and parsing speed of pretrained models for different tasks. All results are tested on the machine with Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz and Nvidia GeForce GTX 1080 Ti GPU.

Dependency Parsing

English and Chinese dependency parsing models are trained on PTB and CTB7 respectively. For each parser, we provide pretrained models that take BiLSTM as encoder. We also provide models trained by finetuning pretrained language models from Huggingface Transformers. We use robert-large for English and hfl/chinese-electra-180g-large-discriminator for Chinese. During evaluation, punctuation is ignored in all metrics for PTB.

NameUASLASSents/s
dep-biaffine-en96.0194.411831.91
dep-crf2o-en96.0794.51531.59
dep-biaffine-roberta-en97.3395.86271.80
dep-biaffine-zh88.6485.471180.57
dep-crf2o-zh89.2286.15237.40
dep-biaffine-electra-zh92.4589.55160.56

The multilingual dependency parsing model, named dep-biaffine-xlmr, is trained on merged 12 selected treebanks from Universal Dependencies (UD) v2.3 dataset by finetuning xlm-roberta-large. The following table lists results of each treebank. Languages are represented by ISO 639-1 Language Codes.

LanguageUASLASSents/s
bg96.9594.24343.96
ca95.5794.20184.88
cs95.7993.83245.68
de89.7485.59283.53
en93.3791.27269.16
es94.7893.29192.00
fr94.5691.90219.35
it96.2994.47254.82
nl96.0493.76268.57
no95.6494.45318.00
ro94.5989.79216.45
ru96.3795.24243.56

Constituency Parsing

We use PTB and CTB7 datasets to train English and Chinese constituency parsing models. Below are the results.

| Name

编辑推荐精选

蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多