A Python package designed for structured prediction, including reproductions of many state-of-the-art syntactic/semantic parsers (with pretrained models for more than 19 languages),
and highly-parallelized implementations of several well-known structured prediction algorithms.[^1]
You can install SuPar via pip:
$ pip install -U supar
or from source directly:
$ pip install -U git+https://github.com/yzhangcs/parser
The following requirements should be satisfied:
python: >= 3.8pytorch: >= 1.8transformers: >= 4.0You can download the pretrained model and parse sentences with just a few lines of code:
>>> from supar import Parser # if the gpu device is available # >>> torch.cuda.set_device('cuda:0') >>> parser = Parser.load('dep-biaffine-en') >>> dataset = parser.predict('I saw Sarah with a telescope.', lang='en', prob=True, verbose=False)
By default, we use stanza internally to tokenize plain texts for parsing.
You only need to specify the language code lang for tokenization.
The call to parser.predict will return an instance of supar.utils.Dataset containing the predicted results.
You can either access each sentence held in dataset or an individual field of all results.
Probabilities can be returned along with the results if prob=True.
>>> dataset[0] 1 I _ _ _ _ 2 nsubj _ _ 2 saw _ _ _ _ 0 root _ _ 3 Sarah _ _ _ _ 2 dobj _ _ 4 with _ _ _ _ 2 prep _ _ 5 a _ _ _ _ 6 det _ _ 6 telescope _ _ _ _ 4 pobj _ _ 7 . _ _ _ _ 2 punct _ _ >>> print(f"arcs: {dataset.arcs[0]}\n" f"rels: {dataset.rels[0]}\n" f"probs: {dataset.probs[0].gather(1,torch.tensor(dataset.arcs[0]).unsqueeze(1)).squeeze(-1)}") arcs: [2, 0, 2, 2, 6, 4, 2] rels: ['nsubj', 'root', 'dobj', 'prep', 'det', 'pobj', 'punct'] probs: tensor([1.0000, 0.9999, 0.9966, 0.8944, 1.0000, 1.0000, 0.9999])
SuPar also supports parsing from tokenized sentences or from file.
For BiLSTM-based semantic dependency parsing models, lemmas and POS tags are needed.
>>> import os >>> import tempfile # if the gpu device is available # >>> torch.cuda.set_device('cuda:0') >>> dep = Parser.load('dep-biaffine-en') >>> dep.predict(['I', 'saw', 'Sarah', 'with', 'a', 'telescope', '.'], verbose=False)[0] 1 I _ _ _ _ 2 nsubj _ _ 2 saw _ _ _ _ 0 root _ _ 3 Sarah _ _ _ _ 2 dobj _ _ 4 with _ _ _ _ 2 prep _ _ 5 a _ _ _ _ 6 det _ _ 6 telescope _ _ _ _ 4 pobj _ _ 7 . _ _ _ _ 2 punct _ _ >>> path = os.path.join(tempfile.mkdtemp(), 'data.conllx') >>> with open(path, 'w') as f: ... f.write('''# text = But I found the location wonderful and the neighbors very kind. 1\tBut\t_\t_\t_\t_\t_\t_\t_\t_ 2\tI\t_\t_\t_\t_\t_\t_\t_\t_ 3\tfound\t_\t_\t_\t_\t_\t_\t_\t_ 4\tthe\t_\t_\t_\t_\t_\t_\t_\t_ 5\tlocation\t_\t_\t_\t_\t_\t_\t_\t_ 6\twonderful\t_\t_\t_\t_\t_\t_\t_\t_ 7\tand\t_\t_\t_\t_\t_\t_\t_\t_ 7.1\tfound\t_\t_\t_\t_\t_\t_\t_\t_ 8\tthe\t_\t_\t_\t_\t_\t_\t_\t_ 9\tneighbors\t_\t_\t_\t_\t_\t_\t_\t_ 10\tvery\t_\t_\t_\t_\t_\t_\t_\t_ 11\tkind\t_\t_\t_\t_\t_\t_\t_\t_ 12\t.\t_\t_\t_\t_\t_\t_\t_\t_ ''') ... >>> dep.predict(path, pred='pred.conllx', verbose=False)[0] # text = But I found the location wonderful and the neighbors very kind. 1 But _ _ _ _ 3 cc _ _ 2 I _ _ _ _ 3 nsubj _ _ 3 found _ _ _ _ 0 root _ _ 4 the _ _ _ _ 5 det _ _ 5 location _ _ _ _ 6 nsubj _ _ 6 wonderful _ _ _ _ 3 xcomp _ _ 7 and _ _ _ _ 6 cc _ _ 7.1 found _ _ _ _ _ _ _ _ 8 the _ _ _ _ 9 det _ _ 9 neighbors _ _ _ _ 11 dep _ _ 10 very _ _ _ _ 11 advmod _ _ 11 kind _ _ _ _ 6 conj _ _ 12 . _ _ _ _ 3 punct _ _ >>> con = Parser.load('con-crf-en') >>> con.predict(['I', 'saw', 'Sarah', 'with', 'a', 'telescope', '.'], verbose=False)[0].pretty_print() TOP | S _____________|______________________ | VP | | _________|____ | | | | PP | | | | ____|___ | NP | NP | NP | | | | | ___|______ | _ _ _ _ _ _ _ | | | | | | | I saw Sarah with a telescope . >>> sdp = Parser.load('sdp-biaffine-en') >>> sdp.predict([[('I','I','PRP'), ('saw','see','VBD'), ('Sarah','Sarah','NNP'), ('with','with','IN'), ('a','a','DT'), ('telescope','telescope','NN'), ('.','_','.')]], verbose=False)[0] 1 I I PRP _ _ _ _ 2:ARG1 _ 2 saw see VBD _ _ _ _ 0:root|4:ARG1 _ 3 Sarah Sarah NNP _ _ _ _ 2:ARG2 _ 4 with with IN _ _ _ _ _ _ 5 a a DT _ _ _ _ _ _ 6 telescope telescope NN _ _ _ _ 4:ARG2|5:BV _ 7 . _ . _ _ _ _ _ _
To train a model from scratch, it is preferred to use the command-line option, which is more flexible and customizable. Below is an example of training Biaffine Dependency Parser:
$ python -m supar.cmds.dep.biaffine train -b -d 0 -c dep-biaffine-en -p model -f char
Alternatively, SuPar provides some equivalent command entry points registered in setup.py:
dep-biaffine, dep-crf2o, con-crf and sdp-biaffine, etc.
$ dep-biaffine train -b -d 0 -c dep-biaffine-en -p model -f char
To accommodate large models, distributed training is also supported:
$ python -m supar.cmds.dep.biaffine train -b -c dep-biaffine-en -d 0,1,2,3 -p model -f char
You can consult the PyTorch documentation and tutorials for more details.
The evaluation process resembles prediction:
# if the gpu device is available # >>> torch.cuda.set_device('cuda:0') >>> Parser.load('dep-biaffine-en').evaluate('ptb/test.conllx', verbose=False) loss: 0.2393 - UCM: 60.51% LCM: 50.37% UAS: 96.01% LAS: 94.41%
See examples for more instructions on training and evaluation.
SuPar provides pretrained models for English, Chinese and 17 other languages.
The tables below list the performance and parsing speed of pretrained models for different tasks.
All results are tested on the machine with Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz and Nvidia GeForce GTX 1080 Ti GPU.
English and Chinese dependency parsing models are trained on PTB and CTB7 respectively.
For each parser, we provide pretrained models that take BiLSTM as encoder.
We also provide models trained by finetuning pretrained language models from Huggingface Transformers.
We use robert-large for English and hfl/chinese-electra-180g-large-discriminator for Chinese.
During evaluation, punctuation is ignored in all metrics for PTB.
| Name | UAS | LAS | Sents/s |
|---|---|---|---|
dep-biaffine-en | 96.01 | 94.41 | 1831.91 |
dep-crf2o-en | 96.07 | 94.51 | 531.59 |
dep-biaffine-roberta-en | 97.33 | 95.86 | 271.80 |
dep-biaffine-zh | 88.64 | 85.47 | 1180.57 |
dep-crf2o-zh | 89.22 | 86.15 | 237.40 |
dep-biaffine-electra-zh | 92.45 | 89.55 | 160.56 |
The multilingual dependency parsing model, named dep-biaffine-xlmr, is trained on merged 12 selected treebanks from Universal Dependencies (UD) v2.3 dataset by finetuning xlm-roberta-large.
The following table lists results of each treebank.
Languages are represented by ISO 639-1 Language Codes.
| Language | UAS | LAS | Sents/s |
|---|---|---|---|
bg | 96.95 | 94.24 | 343.96 |
ca | 95.57 | 94.20 | 184.88 |
cs | 95.79 | 93.83 | 245.68 |
de | 89.74 | 85.59 | 283.53 |
en | 93.37 | 91.27 | 269.16 |
es | 94.78 | 93.29 | 192.00 |
fr | 94.56 | 91.90 | 219.35 |
it | 96.29 | 94.47 | 254.82 |
nl | 96.04 | 93.76 | 268.57 |
no | 95.64 | 94.45 | 318.00 |
ro | 94.59 | 89.79 | 216.45 |
ru | 96.37 | 95.24 | 243.56 |
We use PTB and CTB7 datasets to train English and Chinese constituency parsing models. Below are the results.
| Name


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和 发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号