A Python package designed for structured prediction, including reproductions of many state-of-the-art syntactic/semantic parsers (with pretrained models for more than 19 languages),
and highly-parallelized implementations of several well-known structured prediction algorithms.[^1]
You can install SuPar via pip:
$ pip install -U supar
or from source directly:
$ pip install -U git+https://github.com/yzhangcs/parser
The following requirements should be satisfied:
python: >= 3.8pytorch: >= 1.8transformers: >= 4.0You can download the pretrained model and parse sentences with just a few lines of code:
>>> from supar import Parser # if the gpu device is available # >>> torch.cuda.set_device('cuda:0') >>> parser = Parser.load('dep-biaffine-en') >>> dataset = parser.predict('I saw Sarah with a telescope.', lang='en', prob=True, verbose=False)
By default, we use stanza internally to tokenize plain texts for parsing.
You only need to specify the language code lang for tokenization.
The call to parser.predict will return an instance of supar.utils.Dataset containing the predicted results.
You can either access each sentence held in dataset or an individual field of all results.
Probabilities can be returned along with the results if prob=True.
>>> dataset[0] 1 I _ _ _ _ 2 nsubj _ _ 2 saw _ _ _ _ 0 root _ _ 3 Sarah _ _ _ _ 2 dobj _ _ 4 with _ _ _ _ 2 prep _ _ 5 a _ _ _ _ 6 det _ _ 6 telescope _ _ _ _ 4 pobj _ _ 7 . _ _ _ _ 2 punct _ _ >>> print(f"arcs: {dataset.arcs[0]}\n" f"rels: {dataset.rels[0]}\n" f"probs: {dataset.probs[0].gather(1,torch.tensor(dataset.arcs[0]).unsqueeze(1)).squeeze(-1)}") arcs: [2, 0, 2, 2, 6, 4, 2] rels: ['nsubj', 'root', 'dobj', 'prep', 'det', 'pobj', 'punct'] probs: tensor([1.0000, 0.9999, 0.9966, 0.8944, 1.0000, 1.0000, 0.9999])
SuPar also supports parsing from tokenized sentences or from file.
For BiLSTM-based semantic dependency parsing models, lemmas and POS tags are needed.
>>> import os >>> import tempfile # if the gpu device is available # >>> torch.cuda.set_device('cuda:0') >>> dep = Parser.load('dep-biaffine-en') >>> dep.predict(['I', 'saw', 'Sarah', 'with', 'a', 'telescope', '.'], verbose=False)[0] 1 I _ _ _ _ 2 nsubj _ _ 2 saw _ _ _ _ 0 root _ _ 3 Sarah _ _ _ _ 2 dobj _ _ 4 with _ _ _ _ 2 prep _ _ 5 a _ _ _ _ 6 det _ _ 6 telescope _ _ _ _ 4 pobj _ _ 7 . _ _ _ _ 2 punct _ _ >>> path = os.path.join(tempfile.mkdtemp(), 'data.conllx') >>> with open(path, 'w') as f: ... f.write('''# text = But I found the location wonderful and the neighbors very kind. 1\tBut\t_\t_\t_\t_\t_\t_\t_\t_ 2\tI\t_\t_\t_\t_\t_\t_\t_\t_ 3\tfound\t_\t_\t_\t_\t_\t_\t_\t_ 4\tthe\t_\t_\t_\t_\t_\t_\t_\t_ 5\tlocation\t_\t_\t_\t_\t_\t_\t_\t_ 6\twonderful\t_\t_\t_\t_\t_\t_\t_\t_ 7\tand\t_\t_\t_\t_\t_\t_\t_\t_ 7.1\tfound\t_\t_\t_\t_\t_\t_\t_\t_ 8\tthe\t_\t_\t_\t_\t_\t_\t_\t_ 9\tneighbors\t_\t_\t_\t_\t_\t_\t_\t_ 10\tvery\t_\t_\t_\t_\t_\t_\t_\t_ 11\tkind\t_\t_\t_\t_\t_\t_\t_\t_ 12\t.\t_\t_\t_\t_\t_\t_\t_\t_ ''') ... >>> dep.predict(path, pred='pred.conllx', verbose=False)[0] # text = But I found the location wonderful and the neighbors very kind. 1 But _ _ _ _ 3 cc _ _ 2 I _ _ _ _ 3 nsubj _ _ 3 found _ _ _ _ 0 root _ _ 4 the _ _ _ _ 5 det _ _ 5 location _ _ _ _ 6 nsubj _ _ 6 wonderful _ _ _ _ 3 xcomp _ _ 7 and _ _ _ _ 6 cc _ _ 7.1 found _ _ _ _ _ _ _ _ 8 the _ _ _ _ 9 det _ _ 9 neighbors _ _ _ _ 11 dep _ _ 10 very _ _ _ _ 11 advmod _ _ 11 kind _ _ _ _ 6 conj _ _ 12 . _ _ _ _ 3 punct _ _ >>> con = Parser.load('con-crf-en') >>> con.predict(['I', 'saw', 'Sarah', 'with', 'a', 'telescope', '.'], verbose=False)[0].pretty_print() TOP | S _____________|______________________ | VP | | _________|____ | | | | PP | | | | ____|___ | NP | NP | NP | | | | | ___|______ | _ _ _ _ _ _ _ | | | | | | | I saw Sarah with a telescope . >>> sdp = Parser.load('sdp-biaffine-en') >>> sdp.predict([[('I','I','PRP'), ('saw','see','VBD'), ('Sarah','Sarah','NNP'), ('with','with','IN'), ('a','a','DT'), ('telescope','telescope','NN'), ('.','_','.')]], verbose=False)[0] 1 I I PRP _ _ _ _ 2:ARG1 _ 2 saw see VBD _ _ _ _ 0:root|4:ARG1 _ 3 Sarah Sarah NNP _ _ _ _ 2:ARG2 _ 4 with with IN _ _ _ _ _ _ 5 a a DT _ _ _ _ _ _ 6 telescope telescope NN _ _ _ _ 4:ARG2|5:BV _ 7 . _ . _ _ _ _ _ _
To train a model from scratch, it is preferred to use the command-line option, which is more flexible and customizable. Below is an example of training Biaffine Dependency Parser:
$ python -m supar.cmds.dep.biaffine train -b -d 0 -c dep-biaffine-en -p model -f char
Alternatively, SuPar provides some equivalent command entry points registered in setup.py:
dep-biaffine, dep-crf2o, con-crf and sdp-biaffine, etc.
$ dep-biaffine train -b -d 0 -c dep-biaffine-en -p model -f char
To accommodate large models, distributed training is also supported:
$ python -m supar.cmds.dep.biaffine train -b -c dep-biaffine-en -d 0,1,2,3 -p model -f char
You can consult the PyTorch documentation and tutorials for more details.
The evaluation process resembles prediction:
# if the gpu device is available # >>> torch.cuda.set_device('cuda:0') >>> Parser.load('dep-biaffine-en').evaluate('ptb/test.conllx', verbose=False) loss: 0.2393 - UCM: 60.51% LCM: 50.37% UAS: 96.01% LAS: 94.41%
See examples for more instructions on training and evaluation.
SuPar provides pretrained models for English, Chinese and 17 other languages.
The tables below list the performance and parsing speed of pretrained models for different tasks.
All results are tested on the machine with Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz and Nvidia GeForce GTX 1080 Ti GPU.
English and Chinese dependency parsing models are trained on PTB and CTB7 respectively.
For each parser, we provide pretrained models that take BiLSTM as encoder.
We also provide models trained by finetuning pretrained language models from Huggingface Transformers.
We use robert-large for English and hfl/chinese-electra-180g-large-discriminator for Chinese.
During evaluation, punctuation is ignored in all metrics for PTB.
| Name | UAS | LAS | Sents/s |
|---|---|---|---|
dep-biaffine-en | 96.01 | 94.41 | 1831.91 |
dep-crf2o-en | 96.07 | 94.51 | 531.59 |
dep-biaffine-roberta-en | 97.33 | 95.86 | 271.80 |
dep-biaffine-zh | 88.64 | 85.47 | 1180.57 |
dep-crf2o-zh | 89.22 | 86.15 | 237.40 |
dep-biaffine-electra-zh | 92.45 | 89.55 | 160.56 |
The multilingual dependency parsing model, named dep-biaffine-xlmr, is trained on merged 12 selected treebanks from Universal Dependencies (UD) v2.3 dataset by finetuning xlm-roberta-large.
The following table lists results of each treebank.
Languages are represented by ISO 639-1 Language Codes.
| Language | UAS | LAS | Sents/s |
|---|---|---|---|
bg | 96.95 | 94.24 | 343.96 |
ca | 95.57 | 94.20 | 184.88 |
cs | 95.79 | 93.83 | 245.68 |
de | 89.74 | 85.59 | 283.53 |
en | 93.37 | 91.27 | 269.16 |
es | 94.78 | 93.29 | 192.00 |
fr | 94.56 | 91.90 | 219.35 |
it | 96.29 | 94.47 | 254.82 |
nl | 96.04 | 93.76 | 268.57 |
no | 95.64 | 94.45 | 318.00 |
ro | 94.59 | 89.79 | 216.45 |
ru | 96.37 | 95.24 | 243.56 |
We use PTB and CTB7 datasets to train English and Chinese constituency parsing models. Below are the results.
| Name


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无 水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号