[<a href="https://jykoh.com/vwa">Website</a>] [<a href="https://arxiv.org/abs/2401.13649">Paper</a>]
<i>VisualWebArena</i> is a realistic and diverse benchmark for evaluating multimodal autonomous language agents. It comprises of a set of diverse and complex web-based visual tasks that evaluate various capabilities of autonomous multimodal agents. It builds off the reproducible, execution based evaluation introduced in <a href="https://webarena.dev" target="_blank">WebArena</a>.
# Python 3.10 (or 3.11, but not 3.12 cause 3.12 deprecated distutils needed here) python -m venv venv source venv/bin/activate pip install -r requirements.txt playwright install pip install -e .
You can also run the unit tests to ensure that VisualWebArena is installed correctly:
pytest -x
Setup the standalone environments. Please check out this page for details.
Configurate the urls for each website.
First, export the DATASET
to be visualwebarena
:
export DATASET=visualwebarena
Then, set the URL for the websites
export CLASSIFIEDS="<your_classifieds_domain>:9980" export CLASSIFIEDS_RESET_TOKEN="4b61655535e7ed388f0d40a93600254c" # Default reset token for classifieds site, change if you edited its docker-compose.yml export SHOPPING="<your_shopping_site_domain>:7770" export REDDIT="<your_reddit_domain>:9999" export WIKIPEDIA="<your_wikipedia_domain>:8888" export HOMEPAGE="<your_homepage_domain>:4399"
In addition, if you want to run on the original WebArena tasks, make sure to also set up the CMS, GitLab, and map environments, and then set their respective environment variables:
export SHOPPING_ADMIN="<your_e_commerce_cms_domain>:7780/admin" export GITLAB="<your_gitlab_domain>:8023" export MAP="<your_map_domain>:3000"
python scripts/generate_test_data.py
You will see *.json
files generated in the config_files folder. Each file contains the configuration for one test example.
bash prepare.sh
If using OpenAI models, set a valid OpenAI API key (starting with sk-
) as the environment variable:
export OPENAI_API_KEY=your_key
If using Gemini, first install the gcloud CLI. Configure the API key by authenticating with Google Cloud:
gcloud auth login
gcloud config set project <your_project_name>
python run.py \ --instruction_path agent/prompts/jsons/p_cot_id_actree_3s.json \ --test_start_idx 0 \ --test_end_idx 1 \ --result_dir <your_result_dir> \ --test_config_base_dir=config_files/vwa/test_classifieds \ --model gpt-3.5-turbo-1106 \ --observation_type accessibility_tree_with_captioner
This script will run the first Classifieds example with the GPT-3.5 caption-augmented agent. The trajectory will be saved in <your_result_dir>/0.html
. Note that the baselines that include a captioning model run on GPU by default (e.g., BLIP-2-T5XL as the captioning model will take up approximately 12GB of GPU VRAM).
To run the GPT-4V + SoM agent we proposed in our paper, you can run evaluation with the following flags:
python run.py \ --instruction_path agent/prompts/jsons/p_som_cot_id_actree_3s.json \ --test_start_idx 0 \ --test_end_idx 1 \ --result_dir <your_result_dir> \ --test_config_base_dir=config_files/vwa/test_classifieds \ --model gpt-4-vision-preview \ --action_set_tag som --observation_type image_som
To run Gemini models, you can change the provider, model, and the max_obs_length (as Gemini uses characters instead of tokens for inputs):
python run.py \ --instruction_path agent/prompts/jsons/p_som_cot_id_actree_3s.json \ --test_start_idx 0 \ --test_end_idx 1 \ --max_steps 1 \ --result_dir <your_result_dir> \ --test_config_base_dir=config_files/vwa/test_classifieds \ --provider google --model gemini --mode completion --max_obs_length 15360 \ --action_set_tag som --observation_type image_som
If you'd like to reproduce the results from our paper, we have also provided scripts in scripts/
to run the full evaluation pipeline on each of the VWA environments. For example, to reproduce the results from the Classifieds environment, you can run:
bash scripts/run_classifieds_som.sh
To facilitate analysis and evals, we have also released the trajectories of the GPT-4V + SoM agent on the full set of 910 VWA tasks here. It consists of .html files that record the agent's observations and output at each step of the trajectory.
We have also prepared a demo for you to run the agents on your own task on an arbitrary webpage. An example is shown above where the agent is tasked to find the best Thai restaurant in Pittsburgh.
After following the setup instructions above and setting the OpenAI API key (the other environment variables for website URLs aren't really used, so you should be able to set them to some dummy variable), you can run the GPT-4V + SoM agent with the following command:
python run_demo.py \ --instruction_path agent/prompts/jsons/p_som_cot_id_actree_3s.json \ --start_url "https://www.amazon.com" \ --image "https://media.npr.org/assets/img/2023/01/14/this-is-fine_wide-0077dc0607062e15b476fb7f3bd99c5f340af356-s1400-c100.jpg" \ --intent "Help me navigate to a shirt that has this on it." \ --result_dir demo_test_amazon \ --model gpt-4-vision-preview \ --action_set_tag som --observation_type image_som \ --render
This tasks the agent to find a shirt that looks like the provided image (the "This is fine" dog) from Amazon. Have fun!
We collected human trajectories on 233 tasks (one from each template type) and the Playwright recording files are provided here. These are the same tasks reported in our paper (with a human success rate of ~89%). You can view the HTML pages, actions, etc., by running playwright show-trace <example_id>.zip
. The example_id
follows the same structure as the examples from the corresponding site in config_files/
.
If you find our environment or our models useful, please consider citing <a href="https://jykoh.com/vwa" target="_blank">VisualWebArena</a> as well as <a href="https://webarena.dev/" target="_blank">WebArena</a>:
@article{koh2024visualwebarena,
title={VisualWebArena: Evaluating Multimodal Agents on Realistic Visual Web Tasks},
author={Koh, Jing Yu and Lo, Robert and Jang, Lawrence and Duvvur, Vikram and Lim, Ming Chong and Huang, Po-Yu and Neubig, Graham and Zhou, Shuyan and Salakhutdinov, Ruslan and Fried, Daniel},
journal={arXiv preprint arXiv:2401.13649},
year={2024}
}
@article{zhou2024webarena,
title={WebArena: A Realistic Web Environment for Building Autonomous Agents},
author={Zhou, Shuyan and Xu, Frank F and Zhu, Hao and Zhou, Xuhui and Lo, Robert and Sridhar, Abishek and Cheng, Xianyi and Bisk, Yonatan and Fried, Daniel and Alon, Uri and others},
journal={ICLR},
year={2024}
}
Our code is heavily based off the <a href="https://github.com/web-arena-x/webarena">WebArena codebase</a>.
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团 队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准 表达,轻松呈现各种信息。
深度推理能力全新升级, 全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注 公众号