[<a href="https://jykoh.com/vwa">Website</a>] [<a href="https://arxiv.org/abs/2401.13649">Paper</a>]
<i>VisualWebArena</i> is a realistic and diverse benchmark for evaluating multimodal autonomous language agents. It comprises of a set of diverse and complex web-based visual tasks that evaluate various capabilities of autonomous multimodal agents. It builds off the reproducible, execution based evaluation introduced in <a href="https://webarena.dev" target="_blank">WebArena</a>.

# Python 3.10 (or 3.11, but not 3.12 cause 3.12 deprecated distutils needed here) python -m venv venv source venv/bin/activate pip install -r requirements.txt playwright install pip install -e .
You can also run the unit tests to ensure that VisualWebArena is installed correctly:
pytest -x
Setup the standalone environments. Please check out this page for details.
Configurate the urls for each website.
First, export the DATASET to be visualwebarena:
export DATASET=visualwebarena
Then, set the URL for the websites
export CLASSIFIEDS="<your_classifieds_domain>:9980" export CLASSIFIEDS_RESET_TOKEN="4b61655535e7ed388f0d40a93600254c" # Default reset token for classifieds site, change if you edited its docker-compose.yml export SHOPPING="<your_shopping_site_domain>:7770" export REDDIT="<your_reddit_domain>:9999" export WIKIPEDIA="<your_wikipedia_domain>:8888" export HOMEPAGE="<your_homepage_domain>:4399"
In addition, if you want to run on the original WebArena tasks, make sure to also set up the CMS, GitLab, and map environments, and then set their respective environment variables:
export SHOPPING_ADMIN="<your_e_commerce_cms_domain>:7780/admin" export GITLAB="<your_gitlab_domain>:8023" export MAP="<your_map_domain>:3000"
python scripts/generate_test_data.py
You will see *.json files generated in the config_files folder. Each file contains the configuration for one test example.
bash prepare.sh
If using OpenAI models, set a valid OpenAI API key (starting with sk-) as the environment variable:
export OPENAI_API_KEY=your_key
If using Gemini, first install the gcloud CLI. Configure the API key by authenticating with Google Cloud:
gcloud auth login
gcloud config set project <your_project_name>
python run.py \ --instruction_path agent/prompts/jsons/p_cot_id_actree_3s.json \ --test_start_idx 0 \ --test_end_idx 1 \ --result_dir <your_result_dir> \ --test_config_base_dir=config_files/vwa/test_classifieds \ --model gpt-3.5-turbo-1106 \ --observation_type accessibility_tree_with_captioner
This script will run the first Classifieds example with the GPT-3.5 caption-augmented agent. The trajectory will be saved in <your_result_dir>/0.html. Note that the baselines that include a captioning model run on GPU by default (e.g., BLIP-2-T5XL as the captioning model will take up approximately 12GB of GPU VRAM).

To run the GPT-4V + SoM agent we proposed in our paper, you can run evaluation with the following flags:
python run.py \ --instruction_path agent/prompts/jsons/p_som_cot_id_actree_3s.json \ --test_start_idx 0 \ --test_end_idx 1 \ --result_dir <your_result_dir> \ --test_config_base_dir=config_files/vwa/test_classifieds \ --model gpt-4-vision-preview \ --action_set_tag som --observation_type image_som
To run Gemini models, you can change the provider, model, and the max_obs_length (as Gemini uses characters instead of tokens for inputs):
python run.py \ --instruction_path agent/prompts/jsons/p_som_cot_id_actree_3s.json \ --test_start_idx 0 \ --test_end_idx 1 \ --max_steps 1 \ --result_dir <your_result_dir> \ --test_config_base_dir=config_files/vwa/test_classifieds \ --provider google --model gemini --mode completion --max_obs_length 15360 \ --action_set_tag som --observation_type image_som
If you'd like to reproduce the results from our paper, we have also provided scripts in scripts/ to run the full evaluation pipeline on each of the VWA environments. For example, to reproduce the results from the Classifieds environment, you can run:
bash scripts/run_classifieds_som.sh
To facilitate analysis and evals, we have also released the trajectories of the GPT-4V + SoM agent on the full set of 910 VWA tasks here. It consists of .html files that record the agent's observations and output at each step of the trajectory.

We have also prepared a demo for you to run the agents on your own task on an arbitrary webpage. An example is shown above where the agent is tasked to find the best Thai restaurant in Pittsburgh.
After following the setup instructions above and setting the OpenAI API key (the other environment variables for website URLs aren't really used, so you should be able to set them to some dummy variable), you can run the GPT-4V + SoM agent with the following command:
python run_demo.py \ --instruction_path agent/prompts/jsons/p_som_cot_id_actree_3s.json \ --start_url "https://www.amazon.com" \ --image "https://media.npr.org/assets/img/2023/01/14/this-is-fine_wide-0077dc0607062e15b476fb7f3bd99c5f340af356-s1400-c100.jpg" \ --intent "Help me navigate to a shirt that has this on it." \ --result_dir demo_test_amazon \ --model gpt-4-vision-preview \ --action_set_tag som --observation_type image_som \ --render
This tasks the agent to find a shirt that looks like the provided image (the "This is fine" dog) from Amazon. Have fun!
We collected human trajectories on 233 tasks (one from each template type) and the Playwright recording files are provided here. These are the same tasks reported in our paper (with a human success rate of ~89%). You can view the HTML pages, actions, etc., by running playwright show-trace <example_id>.zip. The example_id follows the same structure as the examples from the corresponding site in config_files/.
If you find our environment or our models useful, please consider citing <a href="https://jykoh.com/vwa" target="_blank">VisualWebArena</a> as well as <a href="https://webarena.dev/" target="_blank">WebArena</a>:
@article{koh2024visualwebarena,
title={VisualWebArena: Evaluating Multimodal Agents on Realistic Visual Web Tasks},
author={Koh, Jing Yu and Lo, Robert and Jang, Lawrence and Duvvur, Vikram and Lim, Ming Chong and Huang, Po-Yu and Neubig, Graham and Zhou, Shuyan and Salakhutdinov, Ruslan and Fried, Daniel},
journal={arXiv preprint arXiv:2401.13649},
year={2024}
}
@article{zhou2024webarena,
title={WebArena: A Realistic Web Environment for Building Autonomous Agents},
author={Zhou, Shuyan and Xu, Frank F and Zhu, Hao and Zhou, Xuhui and Lo, Robert and Sridhar, Abishek and Cheng, Xianyi and Bisk, Yonatan and Fried, Daniel and Alon, Uri and others},
journal={ICLR},
year={2024}
}
Our code is heavily based off the <a href="https://github.com/web-arena-x/webarena">WebArena codebase</a>.


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频