vicuna-installation-guide

vicuna-installation-guide

Vicuna模型安装配置详细教程

本指南提供Vicuna模型的详细安装与配置步骤,适用于13B和7B版本。推荐Unix系统用户,需准备足够的CPU RAM和必要软件包。指南包含一键安装脚本、手动安装步骤及运行模型示例。

VicunaVicuna 13BVicuna 7B安装指南使用指南Github开源项目

Vicuna 安装指南简介

Vicuna 安装指南项目为用户提供了详细的指引,以帮助用户顺利安装和配置 Vicuna 软件。本文将通过简明易懂的语言介绍该项目的主要内容和使用方法。

最新更新

本项目最近进行了以下更新:

  • 更新至 Vicuna 1.5 版本(2023 年 10 月 10 日)
  • 修正了此前的指南内容
  • 增加了 7B 模型的安装说明
  • 修正了 wget 命令语法错误
  • 修改了在作者的 llama.cpp fork 中的 chat-with-vicuna-v1.txt
  • 使用了最新的 Vicuna 1.1 版

系统要求

在安装 Vicuna 之前,需要注意以下系统要求:

  • Vicuna 13B 模型需要约 10GB 的 CPU 内存。如果计算机内存不足,可以通过增加虚拟内存(交换分区)来补充。有关增加 Linux 系统交换分区的教程,请参考此链接
  • 需要安装 git 和 wget 软件包。
  • 建议使用 Unix 系统以获得最佳兼容性。

安装步骤

一键安装脚本

项目提供了便捷的一键安装脚本供用户选择:

  • 安装 Vicuna-1.1-13B 版本

    git clone https://github.com/fredi-python/llama.cpp.git && cd llama.cpp && make -j && cd models && wget -c https://huggingface.co/TheBloke/vicuna-13B-v1.5-GGUF/resolve/main/vicuna-13b-v1.5.Q4_K_M.gguf
  • 安装 Vicuna-1.1-7B 版本

    git clone https://github.com/fredi-python/llama.cpp.git && cd llama.cpp && make -j && cd models && wget -c https://huggingface.co/TheBloke/vicuna-7B-v1.5-GGUF/resolve/main/vicuna-7b-v1.5.Q4_K_M.gguf

手动安装步骤

对于需要手动安装的用户,指南提供了详细的步骤:

  1. 克隆 llama.cpp 代码库

    git clone https://github.com/fredi-python/llama.cpp.git
  2. 进入项目目录

    cd llama.cpp
  3. 编译项目

    make -j
  4. 切换到 models 目录

    cd models
  5. 下载最新的 Vicuna 模型

    • 下载 13B 模型:
      wget -c https://huggingface.co/TheBloke/vicuna-13B-v1.5-GGUF/resolve/main/vicuna-13b-v1.5.Q4_K_M.gguf
    • 下载 7B 模型:
      wget -c https://huggingface.co/TheBloke/vicuna-7B-v1.5-GGUF/resolve/main/vicuna-7b-v1.5.Q4_K_M.gguf

使用方法

安装完成后,用户可以通过以下方法开始使用 Vicuna:

  1. 返回到 llama.cpp 目录

    cd ..
  2. 运行示例命令

    • 以下是使用 llama.cpp 的 chat-with-vicuna-v1.txt 脚本运行 13B 模型的示例命令:
      ./main -m models/vicuna-13b-v1.5.Q4_K_M.gguf --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-vicuna-v1.txt

通过上述步骤,用户可以体验到 Vicuna 强大的功能,简化了在 Unix 系统上安装和配置复杂软件的过程。该指南致力于帮助用户以便捷的方式了解和使用 Vicuna 模型。

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多