MotionDirector

MotionDirector

自定义文本到视频模型的动作生成

MotionDirector是一款文本到视频扩散模型定制工具,可根据视频样本学习特定动作概念并应用于视频生成。该工具支持单个或多个参考视频,能准确捕捉动作特征,实现外观和动作的同步定制。此外,MotionDirector还具备图像动画和电影镜头效果功能,为AI视频创作提供更多可能性。

MotionDirector文本到视频运动定制扩散模型AI视频生成Github开源项目
<p align="center"> <h2 align="center">MotionDirector: Motion Customization of Text-to-Video Diffusion Models</h2> <p align="center"> <a href="https://ruizhaocv.github.io/"><strong>Rui Zhao</strong></a> · <a href="https://ycgu.site/"><strong>Yuchao Gu</strong></a> · <a href="https://zhangjiewu.github.io/"><strong>Jay Zhangjie Wu</strong></a> · <a href="https://junhaozhang98.github.io//"><strong>David Junhao Zhang</strong></a> · <a href="https://jia-wei-liu.github.io/"><strong>Jia-Wei Liu</strong></a> · <a href="https://weijiawu.github.io/"><strong>Weijia Wu</strong></a> · <a href="https://www.jussikeppo.com/"><strong>Jussi Keppo</strong></a> · <a href="https://sites.google.com/view/showlab"><strong>Mike Zheng Shou</strong></a> <br> <br> <a href="https://arxiv.org/abs/2310.08465"><img src='https://img.shields.io/badge/arXiv-2310.08465-b31b1b.svg'></a> <a href='https://showlab.github.io/MotionDirector'><img src='https://img.shields.io/badge/Project_Page-MotionDirector-blue'></a> <a href='https://huggingface.co/spaces/ruizhaocv/MotionDirector'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-yellow'></a> <a href='https://www.youtube.com/watch?v=Wq93zi8bE3U'><img src='https://img.shields.io/badge/Demo_Video-MotionDirector-red'></a> <br> <b>Show Lab, National University of Singapore &nbsp; | &nbsp; Zhejiang University</b> </p> <p align="center"> <img src="https://github.com/showlab/MotionDirector/blob/page/assets/teaser.gif" width="1080px"/> <br> <em>MotionDirector can customize text-to-video diffusion models to generate videos with desired motions.</em> </p>

Task Definition

Motion Customization of Text-to-Video Diffusion Models: </br> Given a set of video clips of the same motion concept, the task of Motion Customization is to adapt existing text-to-video diffusion models to generate diverse videos with this motion.

Demos

Demo Video:

Demo Video of MotionDirector

Customize both Appearance and Motion: <a name="Customize_both_Appearance_and_Motion"></a>

<table class="center"> <tr> <td style="text-align:center;"><b>Reference images or videos</b></td> <td style="text-align:center;" colspan="3"><b>Videos generated by MotionDirector</b></td> </tr> <tr> <td><img src=assets/customized_appearance_results/reference_images.png></td> <td><img src=assets/customized_appearance_results/A_Terracotta_Warrior_is_riding_a_horse_through_an_ancient_battlefield_1455028.gif></td> <td><img src=assets/customized_appearance_results/A_Terracotta_Warrior_is_playing_golf_in_front_of_the_Great_Wall_5804477.gif></td> <td><img src=assets/customized_appearance_results/A_Terracotta_Warrior_is_walking_cross_the_ancient_army_captured_with_a_reverse_follow_cinematic_shot_653658.gif></td> </tr> <tr> <td width=25% style="text-align:center;color:gray;">Reference images for appearance customization: "A Terracotta Warrior on a pure color background."</td> <td width=25% style="text-align:center;">"A Terracotta Warrior is riding a horse through an ancient battlefield."</br> seed: 1455028</td> <td width=25% style="text-align:center;">"A Terracotta Warrior is playing golf in front of the Great Wall." </br> seed: 5804477</td> <td width=25% style="text-align:center;">"A Terracotta Warrior is walking cross the ancient army captured with a reverse follow cinematic shot." </br> seed: 653658</td> </tr> <tr> <td><img src=assets/multi_videos_results/reference_videos.gif></td> <td><img src=assets/customized_appearance_results/A_Terracotta_Warrior_is_riding_a_bicycle_past_an_ancient_Chinese_palace_166357.gif></td> <td><img src=assets/customized_appearance_results/A_Terracotta_Warrior_is_lifting_weights_in_front_of_the_Great_Wall_5635982.gif></td> <td><img src=assets/customized_appearance_results/A_Terracotta_Warrior_is_skateboarding_9033688.gif></td> </tr> <tr> <td width=25% style="text-align:center;color:gray;">Reference videos for motion customization: "A person is riding a bicycle."</td> <td width=25% style="text-align:center;">"A Terracotta Warrior is riding a bicycle past an ancient Chinese palace."</br> seed: 166357.</td> <td width=25% style="text-align:center;">"A Terracotta Warrior is lifting weights in front of the Great Wall." </br> seed: 5635982</td> <td width=25% style="text-align:center;">"A Terracotta Warrior is skateboarding." </br> seed: 9033688</td> </tr> </table>

News

ToDo

  • Gradio Demo
  • More trained weights of MotionDirector

Model List

TypeTraining DataDescriptionsLink
MotionDirector for SportsMultiple videos for each model.Learn motion concepts of sports, i.e. lifting weights, riding horse, palying golf, etc.Link
MotionDirector for Cinematic ShotsA single video for each model.Learn motion concepts of cinematic shots, i.e. dolly zoom, zoom in, zoom out, etc.Link
MotionDirector for Image AnimationA single image for spatial path. And a single video or multiple videos for temporal path.Animate the given image with learned motions.Link
MotionDirector with Customized AppearanceA single image or multiple images for spatial path. And a single video or multiple videos for temporal path.Customize both appearance and motion in video generation.Link

Setup

Requirements

# create virtual environment conda create -n motiondirector python=3.8 conda activate motiondirector # install packages pip install -r requirements.txt

Weights of Foundation Models

git lfs install ## You can choose the ModelScopeT2V or ZeroScope, etc., as the foundation model. ## ZeroScope git clone https://huggingface.co/cerspense/zeroscope_v2_576w ./models/zeroscope_v2_576w/ ## ModelScopeT2V git clone https://huggingface.co/damo-vilab/text-to-video-ms-1.7b ./models/model_scope/

Weights of trained MotionDirector <a name="download_weights"></a>

# Make sure you have git-lfs installed (https://git-lfs.com) git lfs install git clone https://huggingface.co/ruizhaocv/MotionDirector_weights ./outputs # More and better trained MotionDirector are released at a new repo: git clone https://huggingface.co/ruizhaocv/MotionDirector ./outputs # The usage is slightly different, which will be updated later.

Usage

Training

Train MotionDirector on multiple videos:

python MotionDirector_train.py --config ./configs/config_multi_videos.yaml

Train MotionDirector on a single video:

python MotionDirector_train.py --config ./configs/config_single_video.yaml

Note:

  • Before running the above command, make sure you replace the path to foundational model weights and training data with your own in the config files config_multi_videos.yaml or config_single_video.yaml.
  • Generally, training on multiple 16-frame videos usually takes 300~500 steps, about 9~16 minutes using one A5000 GPU. Training on a single video takes 50~150 steps, about 1.5~4.5 minutes using one A5000 GPU. The required VRAM for training is around 14GB.
  • Reduce n_sample_frames if your GPU memory is limited.
  • Reduce the learning rate and increase the training steps for better performance.

Inference

python MotionDirector_inference.py --model /path/to/the/foundation/model --prompt "Your prompt" --checkpoint_folder /path/to/the/trained/MotionDirector --checkpoint_index 300 --noise_prior 0.

Note:

  • Replace /path/to/the/foundation/model with your own path to the foundation model, like ZeroScope.
  • The value of checkpoint_index means the checkpoint saved at which the training step is selected.
  • The value of noise_prior indicates how much the inversion noise of the reference video affects the generation. We recommend setting it to 0 for MotionDirector trained on multiple videos to achieve the highest diverse generation, while setting it to 0.1~0.5 for MotionDirector trained on a single video for faster convergence and better alignment with the reference video.

Inference with pre-trained MotionDirector

All available weights are at official Huggingface Repo. Run the download command, the weights will be downloaded to the folder outputs, then run the following inference command to generate videos.

MotionDirector trained on multiple videos:

python MotionDirector_inference.py --model /path/to/the/ZeroScope --prompt "A person is riding a bicycle past the Eiffel Tower." --checkpoint_folder ./outputs/train/riding_bicycle/ --checkpoint_index 300 --noise_prior 0. --seed 7192280

Note:

  • Replace /path/to/the/ZeroScope with your own path to the foundation model, i.e. the ZeroScope.
  • Change the prompt to generate different videos.
  • The seed is set to a random value by default. Set it to a specific value will obtain certain results, as provided in the table below.

Results:

<table class="center"> <tr> <td style="text-align:center;"><b>Reference Videos</b></td> <td style="text-align:center;" colspan="3"><b>Videos Generated by MotionDirector</b></td> </tr> <tr> <td><img src=assets/multi_videos_results/reference_videos.gif></td> <td><img src=assets/multi_videos_results/A_person_is_riding_a_bicycle_past_the_Eiffel_Tower_7192280.gif></td> <td><img src=assets/multi_videos_results/A_panda_is_riding_a_bicycle_in_a_garden_2178639.gif></td> <td><img src=assets/multi_videos_results/An_alien_is_riding_a_bicycle_on_Mars_2390886.gif></td> </tr> <tr> <td width=25% style="text-align:center;color:gray;">"A person is riding a bicycle."</td> <td width=25% style="text-align:center;">"A person is riding a bicycle past the Eiffel Tower.” </br> seed: 7192280</td> <td width=25% style="text-align:center;">"A panda is riding a bicycle in a garden." </br> seed: <s>2178639</s> </td> <td width=25% style="text-align:center;">"An alien is riding a bicycle on Mars." </br> seed: 2390886</td> </table>

MotionDirector trained on a single video:

16 frames:

python MotionDirector_inference.py --model /path/to/the/ZeroScope --prompt "A tank is running on the moon." --checkpoint_folder ./outputs/train/car_16/ --checkpoint_index 150 --noise_prior 0.5 --seed 8551187
<table class="center"> <tr> <td style="text-align:center;"><b>Reference Video</b></td> <td style="text-align:center;" colspan="3"><b>Videos Generated by MotionDirector</b></td> </tr> <tr> <td><img src=assets/single_video_results/reference_video.gif></td> <td><img src=assets/single_video_results/A_tank_is_running_on_the_moon_8551187.gif></td> <td><img src=assets/single_video_results/A_lion_is_running_past_the_pyramids_431554.gif></td> <td><img src=assets/single_video_results/A_spaceship_is_flying_past_Mars_8808231.gif></td> </tr> <tr> <td width=25% style="text-align:center;color:gray;">"A car is running on the road."</td> <td width=25% style="text-align:center;">"A tank is running on the moon.” </br> seed: 8551187</td> <td width=25% style="text-align:center;">"A lion is running past the pyramids." </br> seed: 431554</td> <td width=25% style="text-align:center;">"A spaceship is flying past Mars." </br> seed: 8808231</td> </tr> </table>

24 frames:

python MotionDirector_inference.py --model /path/to/the/ZeroScope --prompt "A truck is running past the Arc de Triomphe." --checkpoint_folder ./outputs/train/car_24/ --checkpoint_index 150 --noise_prior 0.5 --width 576 --height 320 --num-frames 24 --seed 34543
<table class="center"> <tr> <td style="text-align:center;"><b>Reference Video</b></td> <td style="text-align:center;" colspan="3"><b>Videos Generated by MotionDirector</b></td> </tr> <tr> <td><img src=assets/single_video_results/24_frames/reference_video.gif></td> <td><img src=assets/single_video_results/24_frames/A_truck_is_running_past_the_Arc_de_Triomphe_34543.gif></td> <td><img src=assets/single_video_results/24_frames/An_elephant_is_running_in_a_forest_2171736.gif></td> </tr> <tr> <td width=25% style="text-align:center;color:gray;">"A car is running on the road."</td> <td width=25% style="text-align:center;">"A truck is running past the Arc de Triomphe.” </br> seed: 34543</td> <td width=25% style="text-align:center;">"An elephant is running in a forest." </br> seed: 2171736</td> </tr> <tr> <td><img src=assets/single_video_results/24_frames/reference_video.gif></td> <td><img src=assets/single_video_results/24_frames/A_person_on_a_camel_is_running_past_the_pyramids_4904126.gif></td> <td><img

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多