MotionDirector

MotionDirector

自定义文本到视频模型的动作生成

MotionDirector是一款文本到视频扩散模型定制工具,可根据视频样本学习特定动作概念并应用于视频生成。该工具支持单个或多个参考视频,能准确捕捉动作特征,实现外观和动作的同步定制。此外,MotionDirector还具备图像动画和电影镜头效果功能,为AI视频创作提供更多可能性。

MotionDirector文本到视频运动定制扩散模型AI视频生成Github开源项目
<p align="center"> <h2 align="center">MotionDirector: Motion Customization of Text-to-Video Diffusion Models</h2> <p align="center"> <a href="https://ruizhaocv.github.io/"><strong>Rui Zhao</strong></a> · <a href="https://ycgu.site/"><strong>Yuchao Gu</strong></a> · <a href="https://zhangjiewu.github.io/"><strong>Jay Zhangjie Wu</strong></a> · <a href="https://junhaozhang98.github.io//"><strong>David Junhao Zhang</strong></a> · <a href="https://jia-wei-liu.github.io/"><strong>Jia-Wei Liu</strong></a> · <a href="https://weijiawu.github.io/"><strong>Weijia Wu</strong></a> · <a href="https://www.jussikeppo.com/"><strong>Jussi Keppo</strong></a> · <a href="https://sites.google.com/view/showlab"><strong>Mike Zheng Shou</strong></a> <br> <br> <a href="https://arxiv.org/abs/2310.08465"><img src='https://img.shields.io/badge/arXiv-2310.08465-b31b1b.svg'></a> <a href='https://showlab.github.io/MotionDirector'><img src='https://img.shields.io/badge/Project_Page-MotionDirector-blue'></a> <a href='https://huggingface.co/spaces/ruizhaocv/MotionDirector'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-yellow'></a> <a href='https://www.youtube.com/watch?v=Wq93zi8bE3U'><img src='https://img.shields.io/badge/Demo_Video-MotionDirector-red'></a> <br> <b>Show Lab, National University of Singapore &nbsp; | &nbsp; Zhejiang University</b> </p> <p align="center"> <img src="https://github.com/showlab/MotionDirector/blob/page/assets/teaser.gif" width="1080px"/> <br> <em>MotionDirector can customize text-to-video diffusion models to generate videos with desired motions.</em> </p>

Task Definition

Motion Customization of Text-to-Video Diffusion Models: </br> Given a set of video clips of the same motion concept, the task of Motion Customization is to adapt existing text-to-video diffusion models to generate diverse videos with this motion.

Demos

Demo Video:

Demo Video of MotionDirector

Customize both Appearance and Motion: <a name="Customize_both_Appearance_and_Motion"></a>

<table class="center"> <tr> <td style="text-align:center;"><b>Reference images or videos</b></td> <td style="text-align:center;" colspan="3"><b>Videos generated by MotionDirector</b></td> </tr> <tr> <td><img src=assets/customized_appearance_results/reference_images.png></td> <td><img src=assets/customized_appearance_results/A_Terracotta_Warrior_is_riding_a_horse_through_an_ancient_battlefield_1455028.gif></td> <td><img src=assets/customized_appearance_results/A_Terracotta_Warrior_is_playing_golf_in_front_of_the_Great_Wall_5804477.gif></td> <td><img src=assets/customized_appearance_results/A_Terracotta_Warrior_is_walking_cross_the_ancient_army_captured_with_a_reverse_follow_cinematic_shot_653658.gif></td> </tr> <tr> <td width=25% style="text-align:center;color:gray;">Reference images for appearance customization: "A Terracotta Warrior on a pure color background."</td> <td width=25% style="text-align:center;">"A Terracotta Warrior is riding a horse through an ancient battlefield."</br> seed: 1455028</td> <td width=25% style="text-align:center;">"A Terracotta Warrior is playing golf in front of the Great Wall." </br> seed: 5804477</td> <td width=25% style="text-align:center;">"A Terracotta Warrior is walking cross the ancient army captured with a reverse follow cinematic shot." </br> seed: 653658</td> </tr> <tr> <td><img src=assets/multi_videos_results/reference_videos.gif></td> <td><img src=assets/customized_appearance_results/A_Terracotta_Warrior_is_riding_a_bicycle_past_an_ancient_Chinese_palace_166357.gif></td> <td><img src=assets/customized_appearance_results/A_Terracotta_Warrior_is_lifting_weights_in_front_of_the_Great_Wall_5635982.gif></td> <td><img src=assets/customized_appearance_results/A_Terracotta_Warrior_is_skateboarding_9033688.gif></td> </tr> <tr> <td width=25% style="text-align:center;color:gray;">Reference videos for motion customization: "A person is riding a bicycle."</td> <td width=25% style="text-align:center;">"A Terracotta Warrior is riding a bicycle past an ancient Chinese palace."</br> seed: 166357.</td> <td width=25% style="text-align:center;">"A Terracotta Warrior is lifting weights in front of the Great Wall." </br> seed: 5635982</td> <td width=25% style="text-align:center;">"A Terracotta Warrior is skateboarding." </br> seed: 9033688</td> </tr> </table>

News

ToDo

  • Gradio Demo
  • More trained weights of MotionDirector

Model List

TypeTraining DataDescriptionsLink
MotionDirector for SportsMultiple videos for each model.Learn motion concepts of sports, i.e. lifting weights, riding horse, palying golf, etc.Link
MotionDirector for Cinematic ShotsA single video for each model.Learn motion concepts of cinematic shots, i.e. dolly zoom, zoom in, zoom out, etc.Link
MotionDirector for Image AnimationA single image for spatial path. And a single video or multiple videos for temporal path.Animate the given image with learned motions.Link
MotionDirector with Customized AppearanceA single image or multiple images for spatial path. And a single video or multiple videos for temporal path.Customize both appearance and motion in video generation.Link

Setup

Requirements

# create virtual environment conda create -n motiondirector python=3.8 conda activate motiondirector # install packages pip install -r requirements.txt

Weights of Foundation Models

git lfs install ## You can choose the ModelScopeT2V or ZeroScope, etc., as the foundation model. ## ZeroScope git clone https://huggingface.co/cerspense/zeroscope_v2_576w ./models/zeroscope_v2_576w/ ## ModelScopeT2V git clone https://huggingface.co/damo-vilab/text-to-video-ms-1.7b ./models/model_scope/

Weights of trained MotionDirector <a name="download_weights"></a>

# Make sure you have git-lfs installed (https://git-lfs.com) git lfs install git clone https://huggingface.co/ruizhaocv/MotionDirector_weights ./outputs # More and better trained MotionDirector are released at a new repo: git clone https://huggingface.co/ruizhaocv/MotionDirector ./outputs # The usage is slightly different, which will be updated later.

Usage

Training

Train MotionDirector on multiple videos:

python MotionDirector_train.py --config ./configs/config_multi_videos.yaml

Train MotionDirector on a single video:

python MotionDirector_train.py --config ./configs/config_single_video.yaml

Note:

  • Before running the above command, make sure you replace the path to foundational model weights and training data with your own in the config files config_multi_videos.yaml or config_single_video.yaml.
  • Generally, training on multiple 16-frame videos usually takes 300~500 steps, about 9~16 minutes using one A5000 GPU. Training on a single video takes 50~150 steps, about 1.5~4.5 minutes using one A5000 GPU. The required VRAM for training is around 14GB.
  • Reduce n_sample_frames if your GPU memory is limited.
  • Reduce the learning rate and increase the training steps for better performance.

Inference

python MotionDirector_inference.py --model /path/to/the/foundation/model --prompt "Your prompt" --checkpoint_folder /path/to/the/trained/MotionDirector --checkpoint_index 300 --noise_prior 0.

Note:

  • Replace /path/to/the/foundation/model with your own path to the foundation model, like ZeroScope.
  • The value of checkpoint_index means the checkpoint saved at which the training step is selected.
  • The value of noise_prior indicates how much the inversion noise of the reference video affects the generation. We recommend setting it to 0 for MotionDirector trained on multiple videos to achieve the highest diverse generation, while setting it to 0.1~0.5 for MotionDirector trained on a single video for faster convergence and better alignment with the reference video.

Inference with pre-trained MotionDirector

All available weights are at official Huggingface Repo. Run the download command, the weights will be downloaded to the folder outputs, then run the following inference command to generate videos.

MotionDirector trained on multiple videos:

python MotionDirector_inference.py --model /path/to/the/ZeroScope --prompt "A person is riding a bicycle past the Eiffel Tower." --checkpoint_folder ./outputs/train/riding_bicycle/ --checkpoint_index 300 --noise_prior 0. --seed 7192280

Note:

  • Replace /path/to/the/ZeroScope with your own path to the foundation model, i.e. the ZeroScope.
  • Change the prompt to generate different videos.
  • The seed is set to a random value by default. Set it to a specific value will obtain certain results, as provided in the table below.

Results:

<table class="center"> <tr> <td style="text-align:center;"><b>Reference Videos</b></td> <td style="text-align:center;" colspan="3"><b>Videos Generated by MotionDirector</b></td> </tr> <tr> <td><img src=assets/multi_videos_results/reference_videos.gif></td> <td><img src=assets/multi_videos_results/A_person_is_riding_a_bicycle_past_the_Eiffel_Tower_7192280.gif></td> <td><img src=assets/multi_videos_results/A_panda_is_riding_a_bicycle_in_a_garden_2178639.gif></td> <td><img src=assets/multi_videos_results/An_alien_is_riding_a_bicycle_on_Mars_2390886.gif></td> </tr> <tr> <td width=25% style="text-align:center;color:gray;">"A person is riding a bicycle."</td> <td width=25% style="text-align:center;">"A person is riding a bicycle past the Eiffel Tower.” </br> seed: 7192280</td> <td width=25% style="text-align:center;">"A panda is riding a bicycle in a garden." </br> seed: <s>2178639</s> </td> <td width=25% style="text-align:center;">"An alien is riding a bicycle on Mars." </br> seed: 2390886</td> </table>

MotionDirector trained on a single video:

16 frames:

python MotionDirector_inference.py --model /path/to/the/ZeroScope --prompt "A tank is running on the moon." --checkpoint_folder ./outputs/train/car_16/ --checkpoint_index 150 --noise_prior 0.5 --seed 8551187
<table class="center"> <tr> <td style="text-align:center;"><b>Reference Video</b></td> <td style="text-align:center;" colspan="3"><b>Videos Generated by MotionDirector</b></td> </tr> <tr> <td><img src=assets/single_video_results/reference_video.gif></td> <td><img src=assets/single_video_results/A_tank_is_running_on_the_moon_8551187.gif></td> <td><img src=assets/single_video_results/A_lion_is_running_past_the_pyramids_431554.gif></td> <td><img src=assets/single_video_results/A_spaceship_is_flying_past_Mars_8808231.gif></td> </tr> <tr> <td width=25% style="text-align:center;color:gray;">"A car is running on the road."</td> <td width=25% style="text-align:center;">"A tank is running on the moon.” </br> seed: 8551187</td> <td width=25% style="text-align:center;">"A lion is running past the pyramids." </br> seed: 431554</td> <td width=25% style="text-align:center;">"A spaceship is flying past Mars." </br> seed: 8808231</td> </tr> </table>

24 frames:

python MotionDirector_inference.py --model /path/to/the/ZeroScope --prompt "A truck is running past the Arc de Triomphe." --checkpoint_folder ./outputs/train/car_24/ --checkpoint_index 150 --noise_prior 0.5 --width 576 --height 320 --num-frames 24 --seed 34543
<table class="center"> <tr> <td style="text-align:center;"><b>Reference Video</b></td> <td style="text-align:center;" colspan="3"><b>Videos Generated by MotionDirector</b></td> </tr> <tr> <td><img src=assets/single_video_results/24_frames/reference_video.gif></td> <td><img src=assets/single_video_results/24_frames/A_truck_is_running_past_the_Arc_de_Triomphe_34543.gif></td> <td><img src=assets/single_video_results/24_frames/An_elephant_is_running_in_a_forest_2171736.gif></td> </tr> <tr> <td width=25% style="text-align:center;color:gray;">"A car is running on the road."</td> <td width=25% style="text-align:center;">"A truck is running past the Arc de Triomphe.” </br> seed: 34543</td> <td width=25% style="text-align:center;">"An elephant is running in a forest." </br> seed: 2171736</td> </tr> <tr> <td><img src=assets/single_video_results/24_frames/reference_video.gif></td> <td><img src=assets/single_video_results/24_frames/A_person_on_a_camel_is_running_past_the_pyramids_4904126.gif></td> <td><img

编辑推荐精选

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

下拉加载更多