基于数据分布比率估计的离散扩散模型
Score-Entropy-Discrete-Diffusion 是一个基于 PyTorch 实现的离散扩散模型项目。它通过估计数据分布比率来生成文本,包含噪声调度、前向扩散过程、采样策略和模型架构等模块。该项目支持使用预训练模型,提供条件和非条件文本生成功能,并为离散数据生成研究提供了新思路。项目结构模块化,便于进一步研究和应用开发。
本仓库包含了论文《通过估计数据分布比率的离散扩散建模》的PyTorch实现,作者为Aaron Lou、Chenlin Meng和Stefano Ermon。
该代码库采用模块化构建,以促进未来的研究(相对于更紧凑的框架,后者更适合应用)。主要文件包括:
noise_lib.py
:噪声调度graph_lib
:前向扩散过程sampling.py
:采样策略model/
:模型架构只需运行
conda env create -f environment.yml
这将创建一个名为sedd
的环境并安装相应的包。请注意,这会安装CUDA 11.8,不同的CUDA版本需要手动安装。最重要的是确保torch
和flash-attn
包使用相同的CUDA版本(更多信息请参见此处)。
我们的预训练模型托管在huggingface上(small,medium)。但是,模型也可以在本地加载(例如训练后)。所有功能都在load_model.py
中。
# 加载预训练模型
pretrained_small_model, graph, noise = load_model("louaaron/sedd-small")
pretrained_medium_model, graph, noise = load_model("louaaron/sedd-medium")
# 加载本地实验
local_model, graph, noise = load_model("exp_local/experiment")
这样加载会得到模型以及图和噪声(用于损失/采样设置)。
我们可以使用以下命令运行采样
python run_sample.py --model_path MODEL_PATH --steps STEPS
我们也可以使用以下命令进行条件采样
python run_sample_cond.py --model_path MODEL_PATH --step STEPS --prefix PREFIX --suffix SUFFIX
我们提供了训练代码,可以使用以下命令运行
python run_train.py
这将创建一个新目录direc=exp_local/DATE/TIME
,结构如下(兼容本地运行采样实验)
├── direc
│ ├── .hydra
│ │ ├── config.yaml
│ │ ├── ...
│ ├── checkpoints
│ │ ├── checkpoint_*.pth
│ ├── checkpoints-meta
│ │ ├── checkpoint.pth
│ ├── samples
│ │ ├── iter_*
│ │ │ ├── sample_*.txt
│ ├── logs
这里,checkpoints-meta
用于在中断后重新加载运行,samples
包含运行过程中生成的图像,logs
包含运行输出。可以使用ARG_NAME=ARG_VALUE
添加参数,重要的参数包括:
ngpus 训练中使用的GPU数量(使用pytorch DDP)
training.accum 累积步数,small设为1,medium设为2(假设使用8x80GB节点)
noise.type 可选geometric或loglinear
graph.type 可选uniform或absorb
model 可选small或medium
model.scale_by_sigma 如果graph.type=uniform则设为False(尚未配置)
一些示例命令包括
# SEDD absorb的训练超参数
python train.py noise_lib=loglinear graph.type=absorb model=medium training.accum=2
# SEDD uniform的训练超参数
python train.py noise_lib=geometric graph.type=uniform model=small model.scale_by_sigma=False
要在slurm上训练,只需运行
python train.py -m args
@article{lou2024discrete,
title={Discrete diffusion modeling by estimating the ratios of the data distribution},
author={Lou, Aaron and Meng, Chenlin and Ermon, Stefano},
journal={arXiv preprint arXiv:2310.16834},
year={2024}
}
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告 、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技 术优势。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号