awesome-cvpr-2024

awesome-cvpr-2024

CVPR 2024计算机视觉前沿进展集锦

该项目汇总了CVPR 2024会议的重要论文、挑战赛和教程。涵盖计算机视觉领域多个前沿方向,包括视觉变换器、视觉语言模型和3D重建等。为研究人员和从业者提供了解计算机视觉最新进展的全面资源,展现了该领域的创新趋势和突破性成果。

CVPR 2024计算机视觉人工智能深度学习机器学习Github开源项目

Awesome CVPR 2024 Papers, Workshops, Challenges, and Tutorials!

<img src="https://hirokatsukataoka16.github.io/CVPR-2024-LIMIT/img/CVPR_LogoSeattle_2024_Primary.jpg">

visitors

The 2024 Conference on Computer Vision and Pattern Recognition (CVPR) received 11,532 valid paper submissions, and only 2,719 were accepted, for an overall acceptance rate of about 23.6%.

Below is a list of the papers, posters, challenges, workshops, and datasets I'm most excited about.

I'll be there with my crew from Voxel 51 at Booth 1519, which will be located right next to the Meta and Amazon Science booths!

If you found the repo useful, come by and say "Hi" and I'll hook you up with some swag!

<!-- TABLES_START -->

🏆 Challenges

TitleAuthorsCode / arXiv PageSummary
Agriculture-Vision Prize ChallengeThe Agriculture-Vision Prize Challenge 2024 encourages the development of algorithms for recognizing agricultural patterns from aerial images and to promote sustainable agriculture practices. Semi-supervised learning techniques will be used to merge two datasets and assess model performance. Prizes are $2,500 for 1st place, $1,500 for 2nd place, and $1,000 for 3rd place.
Building3D ChallengearXivThis challenge utilizes the Building3D dataset, an urban-scale publicly available dataset with over 160,000 buildings from 16 cities in Estonia. Participants must develop algorithms that take point clouds as input and generate wireframe models.
Structured Semantic 3D Reconstruction (S23DR) ChallengeTransform posed images or SfM outputs into wireframes for extracting semantically meaningful measurements. HoHo dataset provides images, point clouds, and wireframes with semantically tagged edges. $25,000 prize pool.
Pixel-level Video Understanding in the WildThe PVUW challenge includes four tracks: Video Semantic Segmentation (VSS), Video Panoptic Segmentation (VPS), Complex Video Object Segmentation, and Motion Expression guided Video Segmentation[1]. The two new tracks, based on the MOSE and MeViS datasets, aim to foster the development of more comprehensive and robust pixel-level understanding of video scenes in complex environments and realistic scenarios.
SyntaGen CompetitionThe SyntaGen Competition challenges participants to create high-quality synthetic datasets using Stable Diffusion and the 20 class names from PASCAL VOC 2012 for semantic segmentation. The datasets will be evaluated by training a DeepLabv3 model and assessing its performance on a private test set, with submissions ranked based on the mIoU metric[1]. The top 2 teams will receive cash prizes and the opportunity to present their work at the workshop.
SMART-101 CVPR 2024 ChallengeThe EvalAI challenge called "Anthropic Conversational AI Evaluation" has the objective of evaluating open-domain conversational AI systems based on their ability to engage in helpful, harmless, and honest conversations with humans[1]. The challenge comprises a multi-turn dialogue between a human and an AI assistant, where the human can ask the AI to perform open-ended tasks or engage in open-ended conversation[1]. The AI systems are evaluated on various metrics, including helpfulness, harmlessness, honesty, groundedness, and role consistency.
Snapshot Spectral Imaging Face Anti-spoofing ChallengeNew spectroscopy sensors can improve facial recognition systems' ability to identify realistic flexible masks made of silicone or latex. Snapshot Spectral Imaging (SSI) technology obtains compressed sensing spectral images in a single exposure, making it useful for incorporating spectroscopic information. Using a snapshot spectral camera, we created HySpeFAS - the first snapshot spectral face anti-spoofing dataset with 6760 hyperspectral images, each containing 30 spectral channels. This competition aims to encourage research on new spectroscopic sensor face anti-spoofing algorithms suitable for SSI images.
Chalearn Face Anti-spoofing WorkshopSpoofing clues resulting from physical presentation attacks are caused by color distortion, screen moire patterns, and production traces. Forgery clues resulting from digital editing attacks are changes in pixel values. The fifth competition aims to explore common characteristics of these attack clues and promote unified detection algorithms. We have a Unified physical-digital Attack dataset, called UniAttackData, with 1,800 participations, 2 physical and 12 digital attacks, and 29,706 videos.
DataCV ChallengeGitHubThe DataCV Challenge searches training sets for various targets in object detection. The datasets for the challenge consist of a data source pool, combining multiple existing detection datasets, and a newly introduced target dataset with diverse detection environments recorded across 100 countries. Test set A is publicly available on Github, while test set B is reserved for determining challenge awards. An evaluation server is provided for calculating test accuracy. Ethical considerations have been followed by blurring human faces and vehicle license plates to ensure individual privacy and validating copyright before distributing the datasets.
Grocery VisionThe GroceryVision Dataset is part of the RetailVision Workshop Challenge at CVPR 2024. It has two tracks that use real-world retail data collected in typical grocery store environments. Track 1 focuses on Video and Spatial Temporal Action Localization (TAL and STAL). Participants are provided with 73,683 image-annotation pairs for training, and their performance is evaluated based on frame-mAP for TAL and tube-mAP for STAL. Track 2 is the Multi-modal Product Retrieval (MPR) challenge. Participants must design methods to accurately retrieve product identity by measuring similarity between images and descriptions.
SoccerNet-GSR'24 ChallengeGitHubSoccerNet Game State Reconstruction (GSR) is a novel computer vision task involving the tracking and identification of sports players from a single moving camera to construct a video game-like minimap, without any specific hardware worn by the players. A new benchmark for Game State Reconstruction is introduced for this challenge, including a new dataset with 200 annotated soccer clips, a new evaluation metric, and a public baseline to serve as a starting point for the participants. Methods will be ranked according to their performance on the introduced metric on a held-out challenge set.

👁️ Vision Transformers

TitleAuthorsCode / arXiv PageSummary
Point Transformer V3: Simpler, Faster, StrongerXiaoyang Wu, Li Jiang, Peng-Shuai WangGitHub arXivThe Point Transformer V3 (PTv3) is a 3D point cloud transformer architecture that prioritizes simplicity and efficiency to enable scalability, overcoming the traditional trade-off between accuracy and speed in point cloud processing. It uses point cloud serialization, serialized attention, enhanced conditional positional encoding (xCPE), and simplified designs to improve efficiency. PTv3 achieves state-of-the-art performance across over 20 downstream tasks spanning indoor and outdoor scenarios, while offering superior speed and memory efficiency compared to previous point transformers.
RepViT: Revisiting Mobile CNN From ViT PerspectiveAo Wang, Hui Chen, Zijia LinGitHub arXivRepViT is a new lightweight convolutional neural network series for mobile devices. It combines efficient architectural choices from Vision Transformers with a standard CNN, MobileNetV3-L. Key steps include separating token mixer and channel mixer, reducing expansion ratio, using early convolutions as stem, employing a deeper downsampling layer, replacing the classifier with a simpler one, and using only 3x3 convolutions. RepViT outperforms existing CNNs and ViTs on vision tasks while maintaining favorable latency on mobile devices.

👁️💬 Vision-Language

TitleAuthorsCode / arXiv PageSummary
Vlogger: Make Your Dream A VlogShaobin Zhuang, Kunchang Li3, Xinyuan ChenGitHub arXivVlogger is an AI system that generates minute-level video blogs from user descriptions. It uses a Large Language Model (LLM) to break down the task into four stages: Script, Actor, ShowMaker, and Voicer. The ShowMaker uses a Spatial-Temporal Enhanced Block (STEB) to enhance spatial-temporal coherence. Vlogger can generate 5+ minute vlogs surpassing previous long video generation methods.
A Closer Look at the Few-Shot Adaptation of Large Vision-Language ModelsJulio Silva-Rodríguez, Sina Hajimiri, Ismail Ben AyedGitHub arXivCLIP is a powerful vision-language model for visual recognition. However, fine-tuning it for small downstream tasks with limited labeled samples is challenging. Efficient transfer learning (ETL) methods adapt VLMs with few parameters, but require careful per-task hyperparameter tuning using large validation sets. To overcome this, the authors propose CLAP, a principled approach that adapts linear probing for few-shot learning. CLAP consistently outperforms ETL methods, providing an efficient and robust approach for few-shot adaptation of large vision-language models in realistic settings where hyperparameter tuning with large validation sets is not feasible.
Alpha-CLIP: A CLIP Model Focusing on Wherever You WantZeyi Sun, Ye Fang, Tong WuGitHub arXivAlpha-CLIP is an improved version of the CLIP model that focuses on specific regions of interest in images through an auxiliary alpha channel. It can enhance CLIP in different image-related tasks, including 2D and 3D image generation, captioning, and detection. Alpha-CLIP preserves CLIP's visual recognition ability and boosts zero-shot classification accuracy by 4.1% when using foreground masks.
CLOVA: A Closed-Loop Visual Assistant with Tool Usage and UpdateZhi Gao, Yuntao Du, Xintong ZhangGitHub arXivCLOVA is a system that leverages large language models (LLMs) to generate programs that can accomplish various visual tasks using off-the-shelf visual tools. To overcome the limitation of fixed tools, CLOVA has a closed-loop framework that includes an inference phase, reflection phase, and learning phase. It also uses a multimodal global-local reflection scheme and three flexible methods to collect real-time training data. CLOVA's learning capability enables it to adapt to new environments, resulting in a 5-20% better performance on VQA, multiple-image reasoning, knowledge tagging, and image editing tasks.
Convolutional Prompting meets Language Models for Continual LearningAnurag Roy, Riddhiman Moulick, Vinay K. VermaarXivThe paper introduces ConvPrompt, a novel approach for continual learning in vision transformers. ConvPrompt leverages convolutional prompts and large language models to maintain layer-wise shared embeddings and improve knowledge sharing across tasks. The method improves state-of-the-art by around 3% with significantly fewer parameters. In summary, ConvPrompt is an efficient and effective prompt-based continual learning approach that adapts the model capacity based on task similarity.
Improved Visual Grounding through Self-Consistent ExplanationsRuozhen He, Paola Cascante-Bonilla, Ziyan YangGitHub arXivThis paper presents a strategy called SelfEQ. The aim of SelfEQ is to improve the ability of vision-and-language models to locate specific objects in an image. The proposed strategy involves adding paraphrases generated by a large language model to existing text-image datasets. The model is then fine-tuned to ensure that a phrase and its paraphrase map to the same region in the image. This promotes self-consistency in visual explanations, expands the model's vocabulary, and enhances the quality of object locations highlighted by gradient-based visual explanation methods like GradCAM.
Learning CNN on ViT: A Hybrid Model to Explicitly Class-specific Boundaries for Domain AdaptationBa Hung Ngo, Nhat-Tuong Do-Tran, Tuan-Ngoc NguyenGitHub arXivThe paper introduces a new approach called Explicitly Class-specific Boundaries (ECB) for domain adaptation, which combines the strengths of Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) by training CNN on ViT. ECB uses ViT to determine class-specific decision boundaries and CNN to group target features based on those boundaries. This improves the quality of pseudo labels and reduces knowledge disparities. The paper also provides visualizations to demonstrate the effectiveness of the proposed ECB method.
Link-Context Learning for Multimodal LLMsYan Tai, Weichen Fan, Zhao Zhang

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多