Flood-Filling Networks (FFNs) are a class of neural networks designed for instance segmentation of complex and large shapes, particularly in volume EM datasets of brain tissue.
For more details, see the related publications:
This is not an official Google product.
No installation is required. To install the necessary dependencies, run:
pip install -r requirements.txt
The code has been tested on an Ubuntu 16.04.3 LTS system equipped with a Tesla P100 GPU.
FFN networks can be trained with the train.py script, which expects a
TFRecord file of coordinates at which to sample data from input volumes.
There are two scripts to generate training coordinate files for
a labeled dataset stored in HDF5 files: compute_partitions.py and
build_coordinates.py.
compute_partitions.py transforms the label volume into an intermediate
volume where the value of every voxel A corresponds to the quantized
fraction of voxels labeled identically to A within a subvolume of
radius lom_radius centered at A. lom_radius should normally be
set to (fov_size // 2) + deltas (where fov_size and deltas are
FFN model settings). Every such quantized fraction is called a partition.
Sample invocation:
python compute_partitions.py \ --input_volume third_party/neuroproof_examples/validation_sample/groundtruth.h5:stack \ --output_volume third_party/neuroproof_examples/validation_sample/af.h5:af \ --thresholds 0.025,0.05,0.075,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 \ --lom_radius 24,24,24 \ --min_size 10000
build_coordinates.py uses the partition volume from the previous step
to produce a TFRecord file of coordinates in which every partition is
represented approximately equally frequently. Sample invocation:
python build_coordinates.py \ --partition_volumes validation1:third_party/neuroproof_examples/validation_sample/af.h5:af \ --coordinate_output third_party/neuroproof_examples/validation_sample/tf_record_file \ --margin 24,24,24
We provide a sample coordinate file for the FIB-25 validation1 volume
included in third_party. Due to its size, that file is hosted in
Google Cloud Storage. If you haven't used it before, you will need to
install the Google Cloud SDK and set it up with:
gcloud auth application-default login
You will also need to create a local copy of the labels and image with:
gsutil rsync -r -x ".*.gz" gs://ffn-flyem-fib25/ third_party/neuroproof_examples
Once the coordinate files are ready, you can start training the FFN with:
python train.py \ --train_coords gs://ffn-flyem-fib25/validation_sample/fib_flyem_validation1_label_lom24_24_24_part14_wbbox_coords-*-of-00025.gz \ --data_volumes validation1:third_party/neuroproof_examples/validation_sample/grayscale_maps.h5:raw \ --label_volumes validation1:third_party/neuroproof_examples/validation_sample/groundtruth.h5:stack \ --model_name convstack_3d.ConvStack3DFFNModel \ --model_args "{\"depth\": 12, \"fov_size\": [33, 33, 33], \"deltas\": [8, 8, 8]}" \ --image_mean 128 \ --image_stddev 33
Note that both training and inference with the provided model are
computationally expensive processes. We recommend a GPU-equipped machine
for best results, particularly when using the FFN interactively in a Jupyter
notebook. Training the FFN as configured above requires a GPU with 12 GB of RAM.
You can reduce the batch size, model depth, fov_size, or number of features in
the convolutional layers to reduce the memory usage.
The training script is not configured for multi-GPU or distributed training. For instructions on how to set this up, see the documentation on Distributed TensorFlow.
We provide two examples of how to run inference with a trained FFN model.
For a non-interactive setting, you can use the run_inference.py script:
python run_inference.py \ --inference_request="$(cat configs/inference_training_sample2.pbtxt)" \ --bounding_box 'start { x:0 y:0 z:0 } size { x:250 y:250 z:250 }'
which will segment the training_sample2 volume and save the results in
the results/fib25/training2 directory. Two files will be produced:
seg-0_0_0.npz and seg-0_0_0.prob. Both are in the npz format and
contain a segmentation map and quantized probability maps, respectively.
In Python, you can load the segmentation as follows:
from ffn.inference import storage seg, _ = storage.load_segmentation('results/fib25/training2', (0, 0, 0))
We provide sample segmentation results in results/fib25/sample-training2.npz.
For the training2 volume, segmentation takes ~7 min with a P100 GPU.
For an interactive setting, check out
ffn_inference_colab_demo.ipynb.
This Colab notebook shows how to segment a single object with an explicitly defined
seed and visualize the results while inference is running.
Both examples are configured to use a 3d convstack FFN model trained on the
validation1 volume of the FIB-25 dataset from the FlyEM project at Janelia.
Please see doc/manual.md.


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。


一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号