Flood-Filling Networks (FFNs) are a class of neural networks designed for instance segmentation of complex and large shapes, particularly in volume EM datasets of brain tissue.
For more details, see the related publications:
This is not an official Google product.
No installation is required. To install the necessary dependencies, run:
pip install -r requirements.txt
The code has been tested on an Ubuntu 16.04.3 LTS system equipped with a Tesla P100 GPU.
FFN networks can be trained with the train.py
script, which expects a
TFRecord file of coordinates at which to sample data from input volumes.
There are two scripts to generate training coordinate files for
a labeled dataset stored in HDF5 files: compute_partitions.py
and
build_coordinates.py
.
compute_partitions.py
transforms the label volume into an intermediate
volume where the value of every voxel A
corresponds to the quantized
fraction of voxels labeled identically to A
within a subvolume of
radius lom_radius
centered at A
. lom_radius
should normally be
set to (fov_size // 2) + deltas
(where fov_size
and deltas
are
FFN model settings). Every such quantized fraction is called a partition.
Sample invocation:
python compute_partitions.py \ --input_volume third_party/neuroproof_examples/validation_sample/groundtruth.h5:stack \ --output_volume third_party/neuroproof_examples/validation_sample/af.h5:af \ --thresholds 0.025,0.05,0.075,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 \ --lom_radius 24,24,24 \ --min_size 10000
build_coordinates.py
uses the partition volume from the previous step
to produce a TFRecord file of coordinates in which every partition is
represented approximately equally frequently. Sample invocation:
python build_coordinates.py \ --partition_volumes validation1:third_party/neuroproof_examples/validation_sample/af.h5:af \ --coordinate_output third_party/neuroproof_examples/validation_sample/tf_record_file \ --margin 24,24,24
We provide a sample coordinate file for the FIB-25 validation1
volume
included in third_party
. Due to its size, that file is hosted in
Google Cloud Storage. If you haven't used it before, you will need to
install the Google Cloud SDK and set it up with:
gcloud auth application-default login
You will also need to create a local copy of the labels and image with:
gsutil rsync -r -x ".*.gz" gs://ffn-flyem-fib25/ third_party/neuroproof_examples
Once the coordinate files are ready, you can start training the FFN with:
python train.py \ --train_coords gs://ffn-flyem-fib25/validation_sample/fib_flyem_validation1_label_lom24_24_24_part14_wbbox_coords-*-of-00025.gz \ --data_volumes validation1:third_party/neuroproof_examples/validation_sample/grayscale_maps.h5:raw \ --label_volumes validation1:third_party/neuroproof_examples/validation_sample/groundtruth.h5:stack \ --model_name convstack_3d.ConvStack3DFFNModel \ --model_args "{\"depth\": 12, \"fov_size\": [33, 33, 33], \"deltas\": [8, 8, 8]}" \ --image_mean 128 \ --image_stddev 33
Note that both training and inference with the provided model are
computationally expensive processes. We recommend a GPU-equipped machine
for best results, particularly when using the FFN interactively in a Jupyter
notebook. Training the FFN as configured above requires a GPU with 12 GB of RAM.
You can reduce the batch size, model depth, fov_size
, or number of features in
the convolutional layers to reduce the memory usage.
The training script is not configured for multi-GPU or distributed training. For instructions on how to set this up, see the documentation on Distributed TensorFlow.
We provide two examples of how to run inference with a trained FFN model.
For a non-interactive setting, you can use the run_inference.py
script:
python run_inference.py \ --inference_request="$(cat configs/inference_training_sample2.pbtxt)" \ --bounding_box 'start { x:0 y:0 z:0 } size { x:250 y:250 z:250 }'
which will segment the training_sample2
volume and save the results in
the results/fib25/training2
directory. Two files will be produced:
seg-0_0_0.npz
and seg-0_0_0.prob
. Both are in the npz
format and
contain a segmentation map and quantized probability maps, respectively.
In Python, you can load the segmentation as follows:
from ffn.inference import storage seg, _ = storage.load_segmentation('results/fib25/training2', (0, 0, 0))
We provide sample segmentation results in results/fib25/sample-training2.npz
.
For the training2 volume, segmentation takes ~7 min with a P100 GPU.
For an interactive setting, check out
ffn_inference_colab_demo.ipynb
.
This Colab notebook shows how to segment a single object with an explicitly defined
seed and visualize the results while inference is running.
Both examples are configured to use a 3d convstack FFN model trained on the
validation1
volume of the FIB-25 dataset from the FlyEM project at Janelia.
Please see doc/manual.md
.
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管 理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求 ,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能, 能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量 模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号