Flood-Filling Networks (FFNs) are a class of neural networks designed for instance segmentation of complex and large shapes, particularly in volume EM datasets of brain tissue.
For more details, see the related publications:
This is not an official Google product.
No installation is required. To install the necessary dependencies, run:
pip install -r requirements.txt
The code has been tested on an Ubuntu 16.04.3 LTS system equipped with a Tesla P100 GPU.
FFN networks can be trained with the train.py script, which expects a
TFRecord file of coordinates at which to sample data from input volumes.
There are two scripts to generate training coordinate files for
a labeled dataset stored in HDF5 files: compute_partitions.py and
build_coordinates.py.
compute_partitions.py transforms the label volume into an intermediate
volume where the value of every voxel A corresponds to the quantized
fraction of voxels labeled identically to A within a subvolume of
radius lom_radius centered at A. lom_radius should normally be
set to (fov_size // 2) + deltas (where fov_size and deltas are
FFN model settings). Every such quantized fraction is called a partition.
Sample invocation:
python compute_partitions.py \ --input_volume third_party/neuroproof_examples/validation_sample/groundtruth.h5:stack \ --output_volume third_party/neuroproof_examples/validation_sample/af.h5:af \ --thresholds 0.025,0.05,0.075,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 \ --lom_radius 24,24,24 \ --min_size 10000
build_coordinates.py uses the partition volume from the previous step
to produce a TFRecord file of coordinates in which every partition is
represented approximately equally frequently. Sample invocation:
python build_coordinates.py \ --partition_volumes validation1:third_party/neuroproof_examples/validation_sample/af.h5:af \ --coordinate_output third_party/neuroproof_examples/validation_sample/tf_record_file \ --margin 24,24,24
We provide a sample coordinate file for the FIB-25 validation1 volume
included in third_party. Due to its size, that file is hosted in
Google Cloud Storage. If you haven't used it before, you will need to
install the Google Cloud SDK and set it up with:
gcloud auth application-default login
You will also need to create a local copy of the labels and image with:
gsutil rsync -r -x ".*.gz" gs://ffn-flyem-fib25/ third_party/neuroproof_examples
Once the coordinate files are ready, you can start training the FFN with:
python train.py \ --train_coords gs://ffn-flyem-fib25/validation_sample/fib_flyem_validation1_label_lom24_24_24_part14_wbbox_coords-*-of-00025.gz \ --data_volumes validation1:third_party/neuroproof_examples/validation_sample/grayscale_maps.h5:raw \ --label_volumes validation1:third_party/neuroproof_examples/validation_sample/groundtruth.h5:stack \ --model_name convstack_3d.ConvStack3DFFNModel \ --model_args "{\"depth\": 12, \"fov_size\": [33, 33, 33], \"deltas\": [8, 8, 8]}" \ --image_mean 128 \ --image_stddev 33
Note that both training and inference with the provided model are
computationally expensive processes. We recommend a GPU-equipped machine
for best results, particularly when using the FFN interactively in a Jupyter
notebook. Training the FFN as configured above requires a GPU with 12 GB of RAM.
You can reduce the batch size, model depth, fov_size, or number of features in
the convolutional layers to reduce the memory usage.
The training script is not configured for multi-GPU or distributed training. For instructions on how to set this up, see the documentation on Distributed TensorFlow.
We provide two examples of how to run inference with a trained FFN model.
For a non-interactive setting, you can use the run_inference.py script:
python run_inference.py \ --inference_request="$(cat configs/inference_training_sample2.pbtxt)" \ --bounding_box 'start { x:0 y:0 z:0 } size { x:250 y:250 z:250 }'
which will segment the training_sample2 volume and save the results in
the results/fib25/training2 directory. Two files will be produced:
seg-0_0_0.npz and seg-0_0_0.prob. Both are in the npz format and
contain a segmentation map and quantized probability maps, respectively.
In Python, you can load the segmentation as follows:
from ffn.inference import storage seg, _ = storage.load_segmentation('results/fib25/training2', (0, 0, 0))
We provide sample segmentation results in results/fib25/sample-training2.npz.
For the training2 volume, segmentation takes ~7 min with a P100 GPU.
For an interactive setting, check out
ffn_inference_colab_demo.ipynb.
This Colab notebook shows how to segment a single object with an explicitly defined
seed and visualize the results while inference is running.
Both examples are configured to use a 3d convstack FFN model trained on the
validation1 volume of the FIB-25 dataset from the FlyEM project at Janelia.
Please see doc/manual.md.


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基 于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号