MobileLLM

MobileLLM

轻量高效的移动设备语言模型

MobileLLM是一个针对移动设备优化的大型语言模型项目。该模型通过SwiGLU激活函数、深窄架构、嵌入共享和分组查询注意力等技术,在亿级参数规模下实现了高性能。MobileLLM在零样本常识推理任务中表现出色,不仅在125M和350M参数规模上超越了现有最先进模型,还成功扩展至600M、1B和1.5B参数规模,展示了其在移动设备应用中的潜力。

MobileLLM语言模型AI模型深度学习神经网络Github开源项目

MobileLLM

本仓库包含了我们在ICML 2024发表的论文"MobileLLM: 优化小于十亿参数的语言模型用于设备端场景"中介绍的MobileLLM的训练代码。

在这项工作中,我们全面考虑了多个设计因素,以获得高质量的、参数少于十亿的大语言模型。我们整合了(1) SwiGLU激活函数、(2)深而窄的架构、(3)嵌入共享、(4)分组查询注意力来构建MobileLLM。MobileLLM-125M/350M在零样本常识推理任务上比之前的125M/350M最先进模型分别提高了2.7%/4.3%的准确率。在我们更新的版本中,我们进一步证明了我们的设计理念可以有效扩展到更大的模型,MobileLLM-600M/1B/1.5B取得了最先进的结果。

<div align=center> <img width=50% src="https://yellow-cdn.veclightyear.com/835a84d5/2e0d8abd-0453-4c25-8214-943d1f017a38.png"/> </div>

引用

如果您发现我们的代码对您的研究有用,请考虑引用:

@article{liu2024mobilellm,
    title={MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases},
    author={Liu, Zechun and Zhao, Changsheng and Iandola, Forrest和Lai, Chen和Tian, Yuandong和Fedorov, Igor和Xiong, Yunyang和Chang, Ernie和Shi, Yangyang和Krishnamoorthi, Raghuraman和others},
    journal={arXiv preprint arXiv:2402.14905},
    year={2024}
}

运行

步骤1. 要求:

  • python 3.9, pytorch >= 2.0
  • pip install -r requirement.txt

步骤2. 数据预处理

将分词后的数据集划分或对您自己的数据集进行分词,并均匀分布到总训练节点数量上,每个节点由1x8个GPU组成。然后,将数据组织成以下结构:

  • basepath
    • 1
      • xxx.jsonl
    • 2
      • xxx.jsonl
    • ...
    • #nodes
      • xxx.jsonl

jsonl文件的每一行是一个分词数据的键值对{"token_ids": [1,2,3,4,...]}。

我们的训练代码与https://github.com/LLM360/amber-data-prep中的数据预处理方法兼容。

步骤3. 训练脚本

提供了pretrain.sh脚本,用于在1x8节点设置上使用torchrun启动训练。可以修改此脚本以调整--nnodes参数和其他设置,以适应不同的多节点配置,如使用slurm或torchx。脚本中的学习率适用于1x8节点,批量大小为32。如果您增加节点数量或批量大小,需要线性增加学习率。

运行步骤:

  • pretrain.sh文件中,指定--train_data_local_path为步骤2中预处理的数据路径,并将--input_model_filename指定为./configs/{model_size}/
  • 运行bash pretrain.sh

其他

模型权重仍在法律审查中。如有任何问题,请随时发送电子邮件至(zechunliu at meta dot com)和(cszhao at meta dot com)

训练成本

使用32个NVIDIA A100 80G GPU在1T个token上训练MobileLLM需要以下天数。

125M350M600M1B1.5B
~3天~6天~8天~12天~18天

零样本常识推理任务结果

MobileLLM-125M

模型boolqpiqasiqahellaswagwinograndearc_easyarc_challengeobqa平均
OPT-125M41.325.257.562.041.931.131.250.842.6
GPT-neo-125M40.724.861.362.541.929.731.650.742.9
Pythia-160M40.025.359.562.041.529.931.250.942.5
MobileLLM-125M43.927.160.265.342.438.939.553.146.3
MobileLLM-LS-125M45.828.760.465.742.939.541.152.147.0

MobileLLM-350M

模型boolqpiqasiqahellaswagwinograndearc_easyarc_challengeobqa平均
OPT-350M41.925.754.064.842.636.233.352.443.9
Pythia-410M47.130.355.367.243.140.136.253.446.6
MobileLLM-350M53.833.562.468.644.749.640.057.651.3
MobileLLM-LS-350M54.432.562.869.844.150.645.857.252.1

MobileLLM-600M

模型boolqpiqasiqahellaswagwinograndearc_easyarc_challengeobqa平均
Qwen1.5-500M54.732.146.968.946.048.837.755.048.8
BLOOM-560M43.727.553.765.142.536.532.652.244.2
MobiLlama-800M52.031.754.673.043.352.342.556.350.7
MobileLLM-600M58.135.861.072.344.955.947.958.654.3

MobileLLM-1B

模型boolqpiqasiqahellaswagwinograndearc_easyarc_challengeobqa平均
Pythia-1B49.930.458.769.243.347.438.652.248.7
MobiLlama-1B59.738.459.274.544.962.043.759.055.2
Falcon-1B59.538.463.974.644.662.945.660.956.3
BLOOM-1.1B47.627.358.667.042.442.236.653.846.9
TinyLlama-1.1B59.237.158.172.943.959.144.758.854.2
MobileLLM-1B63.039.066.774.445.061.446.862.357.3

MobileLLM-1.5B

模型boolqpiqasiqahellaswagwinograndearc_easyarc_challengeobqa平均
GPT-neo-1.3B51.333.061.870.943.748.641.254.550.6
OPT-1.3B54.431.758.471.544.753.744.659.152.3
BLOOM-1.7B50.931.261.770.043.247.236.256.149.6
Qwen1.5-1.8B61.136.568.374.147.260.442.961.256.5
GPT-neo-2.7B55.834.362.472.943.655.640.057.952.8
OPT-2.7B56.634.661.874.545.660.248.259.655.1
Pythia-2.8B59.438.966.173.844.559.645.059.455.8
BLOOM-3B55.133.662.170.543.253.941.658.252.3
MobileLLM-1.5B67.540.965.774.846.464.550.564.759.4

致谢

本代码部分基于Hugging Face transformer仓库。

联系方式

Zechun Liu,Meta公司(zechunliu@meta.com

Changsheng Zhao,Meta公司(cszhao@meta.com

许可证

BiT目前采用CC-BY-NC 4.0许可证。

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多