This is a paper list (working in progress) about In-context learning
<!-- , for the following paper: > [**A Survey for In-context Learning**](https://arxiv.org/abs/2301.00234), > Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, Zhifang Sui. > *arXiv preprint ([arXiv 2301.00234](https://arxiv.org/abs/2301.00234))* --> abbreviation
section in our survey
main feature
conference
A Survey for In-context Learning.
Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, Zhifang Sui. [pdf], 2022.12,
This section contains the pilot works that might contributes to the training strategies of ICL.
MetaICL: Learning to Learn In Context NAACL 2022 a pretrained language model is tuned to do in-context learning on a large set of training tasks..
Sewon Min, Mike Lewis, Luke Zettlemoyer, Hannaneh Hajishirzi. [pdf], [project], 2021.10,
Improving In-Context Few-Shot Learning via Self-Supervised Training..
Mingda Chen, Jingfei Du, Ramakanth Pasunuru, Todor Mihaylov, Srini Iyer, Veselin Stoyanov, Zornitsa Kozareva. [pdf], [project], 2022.5,
Calibrate Before Use: Improving Few-shot Performance of Language Models..
Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, Sameer Singh. [pdf], [project], 2021.2,
Symbol tuning improves in-context learning in language models.
Jerry Wei, Le Hou, Andrew Lampinen, Xiangning Chen, Da Huang, Yi Tay, Xinyun Chen, Yifeng Lu, Denny Zhou, Tengyu Ma, Quoc V. Le. [pdf], [project], 2023.5,
Fine-tune language models to approximate unbiased in-context learning.
Timothy Chu, Zhao Song, Chiwun Yang. [pdf], 2023.10,
ICL Markup: Structuring In-Context Learning using Soft-Token Tags.
Marc-Etienne Brunet, Ashton Anderson, Richard Zemel. [pdf], 2023.12,
Cross-task generalization via natural language crowdsourcing instructions.
Swaroop Mishra, Daniel Khashabi, Chitta Baral, Hannaneh Hajishirzi.: [pdf], [project], 2022.5,
Finetuned language models are zero-shot learners.
Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, Quoc V. Le. [pdf], 2021.9,
Scaling instruction-finetuned language models.
Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, Jason Wei [pdf], [project], 2022.10,
Super-naturalinstructions: Generalization via declarative instructions on 1600+ nlp tasks.
Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, Eshaan Pathak, Giannis Karamanolakis, Haizhi Gary Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson, Kirby Kuznia, Krima Doshi, Kuntal Kumar Pal, Maitreya Patel, Mehrad Moradshahi, Mihir Parmar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri, Rushang Karia, Savan Doshi, Shailaja Keyur Sampat, Siddhartha Mishra, Sujan Reddy A, Sumanta Patro, Tanay Dixit, Xudong Shen [pdf], [project], 2022.4,
This section contains the pilot works that might contributes to the prompt selection and prompt formulation strategies of ICL.
On the Effect of Pretraining Corpora on In-context Learning by a Large-scale Language Model.
Seongjin Shin, Sang-Woo Lee, Hwijeen Ahn, Sungdong Kim, HyoungSeok Kim, Boseop Kim, Kyunghyun Cho, Gichang Lee, Woomyoung Park, Jung-Woo Ha, Nako Sung. [pdf], 2022.04,
Chain of Thought Prompting Elicits Reasoning in Large Language Models.
Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, Denny Zhou. [pdf], 2022.01,
Least-to-Most Prompting Enables Complex Reasoning in Large Language Models.
Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, Ed Chi. [pdf], 2022.05,
Self-Generated In-Context Learning: Leveraging Auto-regressive Language Models as a Demonstration Generator.
Hyuhng Joon Kim, Hyunsoo Cho, Junyeob Kim, Taeuk Kim, Kang Min Yoo, Sang-goo Lee. [pdf], 2022.06,
Iteratively Prompt Pre-trained Language Models for Chain of Thought.
Boshi Wang, Xiang Deng, Huan Sun. [pdf], [project], 2022.03,
Automatic Chain of Thought Prompting in Large Language Models.
Zhuosheng Zhang, Aston Zhang, Mu Li, Alex Smola. [pdf], [project], 2022.10,
Learning To Retrieve Prompts for In-Context Learning NAACL 2022 Learn an example retriever via contrastive learning.
Ohad Rubin, Jonathan Herzig, Jonathan Berant. [pdf], [project], 2022.12,
Finetuned Language Models Are Zero-Shot Learners instruction tuning.
Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, Quoc V. Le. [pdf], [project], 2021.09,
Active Example Selection for In-Context Learning.
Yiming Zhang, Shi Feng, Chenhao Tan. [pdf], [project], 2022.11,
Prompting GPT-3 To Be Reliable
Chenglei Si, Zhe Gan, Zhengyuan Yang, Shuohang Wang, Jianfeng Wang, Jordan Boyd-Graber, Lijuan Wang. [pdf], [project], 2022.10,
An lnformation-theoretic Approach to Prompt Engineering Without Ground Truth Labels
Taylor Sorensen, Joshua Robinson, Christopher Rytting, Alexander Shaw, Kyle Rogers, Alexia Delorey, Mahmoud Khalil, Nancy Fulda, David Wingate. [pdf],


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个 国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免 费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频