这是Leslie N. Smith在《用于训练神经网络的循环学习率》中详细介绍的学习率范围测试的PyTorch实现,以及fastai使用的改进版本。
学习率范围测试是一种提供有关最佳学习率的宝贵信息的测试。在预训练运行期间,学习率在两个边界之间线性或指数增加。较低的初始学习率允许网络开始收敛,随着学习率的增加,最终会变得过大,导致网络发散。
通常,在下降的损失曲线中间可以找到一个良好的静态学习率。在下面的图中,这个值为lr = 0.002
。
对于循环学习率(也在Leslie Smith的论文中详细介绍),学习率在两个边界(start_lr, end_lr)
之间循环,作者建议将损失开始下降的点作为start_lr
,将损失停止下降或变得不规则的点作为end_lr
。在下面的图中,start_lr = 0.0002
,end_lr=0.2
。
Python 3.5及以上版本:
pip install torch-lr-finder
安装支持混合精度训练的版本(详见此部分):
pip install torch-lr-finder -v --global-option="apex"
以指数方式增加学习率,并计算每个学习率的训练损失。lr_finder.plot()
绘制训练损失与对数学习率的关系图。
from torch_lr_finder import LRFinder model = ... criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=1e-7, weight_decay=1e-2) lr_finder = LRFinder(model, optimizer, criterion, device="cuda") lr_finder.range_test(trainloader, end_lr=100, num_iter=100) lr_finder.plot() # 检查损失-学习率图 lr_finder.reset() # 将模型和优化器重置为初始状态
线性增加学习率,并计算每个学习率的评估损失。lr_finder.plot()
绘制评估损失与学习率的关系图。
这种方法通常可以产生更精确的曲线,因为评估损失对发散更敏感,但测试时间明显更长,尤其是在评估数据集较大的情况下。
from torch_lr_finder import LRFinder model = ... criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.1, weight_decay=1e-2) lr_finder = LRFinder(model, optimizer, criterion, device="cuda") lr_finder.range_test(trainloader, val_loader=val_loader, end_lr=1, num_iter=100, step_mode="linear") lr_finder.plot(log_lr=False) lr_finder.reset()
LRFinder
的优化器不应附加LRScheduler
。LRFinder.range_test()
会改变模型权重和优化器参数。可以通过LRFinder.reset()
将两者恢复到初始状态。lr_finder.history
访问学习率和损失历史。这将返回一个包含lr
和loss
键的字典。step_mode="linear"
时,学习率范围应在同一数量级内。LRFinder.range_test()
期望从传递给它的DataLoader
对象返回一对input, label
。input
必须准备好传递给模型,label
必须准备好传递给criterion
,无需进行任何进一步的数据处理/处理/转换。如果您发现需要变通方法,可以使用TrainDataLoaderIter
和ValDataLoaderIter
类在DataLoader
和训练/评估循环之间执行任何数据处理/处理/转换。您可以在examples/lrfinder_cifar10_dataloader_iter中找到如何使用这些类的示例。您可以在LRFinder.range_test()
中设置accumulation_steps
参数为适当的值来执行梯度累积:
from torch.utils.data import DataLoader from torch_lr_finder import LRFinder desired_batch_size, real_batch_size = 32, 4 accumulation_steps = desired_batch_size // real_batch_size dataset = ... # 注意`DataLoader`使用的`batch_size` trainloader = DataLoader(dataset, batch_size=real_batch_size, shuffle=True) model = ... criterion = ... optimizer = ... # (可选)使用此设置,将自动采用`amp.scale_loss()` # model, optimizer = amp.initialize(model, optimizer, opt_level='O1') lr_finder = LRFinder(model, optimizer, criterion, device="cuda") lr_finder.range_test(trainloader, end_lr=10, num_iter=100, step_mode="exp", accumulation_steps=accumulation_steps) lr_finder.plot() lr_finder.reset()
现在支持apex.amp
和torch.amp
,以下是示例:
使用apex.amp
:
from torch_lr_finder import LRFinder from apex import amp # 在运行`LRFinder`之前添加此行 model, optimizer = amp.initialize(model, optimizer, opt_level='O1') lr_finder = LRFinder(model, optimizer, criterion, device='cuda', amp_backend='apex') lr_finder.range_test(trainloader, end_lr=10, num_iter=100, step_mode='exp') lr_finder.plot() lr_finder.reset()
from torch_lr_finder import LRFinder amp_config = { 'device_type': 'cuda', 'dtype': torch.float16, } grad_scaler = torch.cuda.amp.GradScaler() lr_finder = LRFinder( model, optimizer, criterion, device='cuda', amp_backend='torch', amp_config=amp_config, grad_scaler=grad_scaler ) lr_finder.range_test(trainloader, end_lr=10, num_iter=100, step_mode='exp') lr_finder.plot() lr_finder.reset()
请注意,混合精度训练的好处需要具有张量核心的NVIDIA GPU(参见:NVIDIA/apex #297)
此外,您可以尝试设置torch.backends.cudnn.benchmark = True
来提高训练速度。(但它可能不适用于某些情况,请自行承担风险)
欢迎所有贡献,但首先请查看CONTRIBUTING.md。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协 作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能, 适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型 生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。