在Apple设备上实现高效稳定的AI图像生 成
ml-stable-diffusion是一个开源项目,旨在优化Stable Diffusion模型在Apple设备上的运行。它包含用于模型转换的Python工具和用于iOS/macOS应用集成的Swift包。通过权重压缩等技术,该项目显著提升了性能和内存效率,使开发者能够在Apple平台应用中实现高质量的AI图像生成。
Run Stable Diffusion on Apple Silicon with Core ML
This repository comprises:
python_coreml_stable_diffusion
, a Python package for converting PyTorch models to Core ML format and performing image generation with Hugging Face diffusers in PythonStableDiffusion
, a Swift package that developers can add to their Xcode projects as a dependency to deploy image generation capabilities in their apps. The Swift package relies on the Core ML model files generated by python_coreml_stable_diffusion
If you run into issues during installation or runtime, please refer to the FAQ section. Please refer to the System Requirements section before getting started.
<img src="assets/readme_reel.png">Model Conversion:
macOS | Python | coremltools |
---|---|---|
13.1 | 3.8 | 7.0 |
Project Build:
macOS | Xcode | Swift |
---|---|---|
13.1 | 14.3 | 5.8 |
Target Device Runtime:
macOS | iPadOS, iOS |
---|---|
13.1 | 16.2 |
Target Device Runtime (With Memory Improvements):
macOS | iPadOS, iOS |
---|---|
14.0 | 17.0 |
Target Device Hardware Generation:
Mac | iPad | iPhone |
---|---|---|
M1 | M1 | A14 |
stabilityai/stable-diffusion-2-1-base
(512x512)
Device | --compute-unit | --attention-implementation | End-to-End Latency (s) | Diffusion Speed (iter/s) |
---|---|---|---|---|
iPhone 12 Mini | CPU_AND_NE | SPLIT_EINSUM_V2 | 18.5* | 1.44 |
iPhone 12 Pro Max | CPU_AND_NE | SPLIT_EINSUM_V2 | 15.4 | 1.45 |
iPhone 13 | CPU_AND_NE | SPLIT_EINSUM_V2 | 10.8* | 2.53 |
iPhone 13 Pro Max | CPU_AND_NE | SPLIT_EINSUM_V2 | 10.4 | 2.55 |
iPhone 14 | CPU_AND_NE | SPLIT_EINSUM_V2 | 8.6 | 2.57 |
iPhone 14 Pro Max | CPU_AND_NE | SPLIT_EINSUM_V2 | 7.9 | 2.69 |
iPad Pro (M1) | CPU_AND_NE | SPLIT_EINSUM_V2 | 11.2 | 2.19 |
iPad Pro (M2) | CPU_AND_NE | SPLIT_EINSUM_V2 | 7.0 | 3.07 |
benchmark
branch of the Diffusers apptokenizer.model_max_length
) in the text token sequence regardless of the actual length of the input text.*
indicates that the reduceMemory option was enabled which loads and unloads models just-in-time to avoid memory shortage. This added up to 2 seconds to the end-to-end latency.--compute-unit
and --attention-implementation
values per device. The former does not modify the Core ML model and can be applied during runtime. The latter modifies the Core ML model. Note that the best performing compute unit is model version and hardware-specific.--attention-implementation
) are generally applicable to Transformers and not customized to Stable Diffusion. Better performance may be observed upon custom kernel tuning. Therefore, these numbers do not represent peak HW capability.stabilityai/stable-diffusion-xl-base-1.0-ios
(768x768)
Device | --compute-unit | --attention-implementation | End-to-End Latency (s) | Diffusion Speed (iter/s) |
---|---|---|---|---|
iPhone 12 Pro | CPU_AND_NE | SPLIT_EINSUM | 116* | 0.50 |
iPhone 13 Pro Max | CPU_AND_NE | SPLIT_EINSUM | 86* | 0.68 |
iPhone 14 Pro Max | CPU_AND_NE | SPLIT_EINSUM | 77* | 0.83 |
iPhone 15 Pro Max | CPU_AND_NE | SPLIT_EINSUM | 31 | 0.85 |
iPad Pro (M1) | CPU_AND_NE | SPLIT_EINSUM | 36 | 0.69 |
iPad Pro (M2) | CPU_AND_NE | SPLIT_EINSUM | 27 | 0.98 |
benchmark
branch of the Diffusers appUnet.mlmodelc
is compressed to 4.04 bit precision following the Mixed-Bit Palettization algorithm recipe published hereUnet.mlmodelc
are compressed to 16 bit precisionVAEDecoder.mlmodelc
in order to enable float16 weight and activation quantization for the VAE model.--attention-implementation SPLIT_EINSUM
is chosen in lieu of SPLIT_EINSUM_V2
due to the prohibitively long compilation time of the latter*
indicates that the reduceMemory option was enabled which loads and unloads models just-in-time to avoid memory shortage. This added significant overhead to the end-to-end latency. Note that end-to-end latency difference between iPad Pro (M1)
and iPhone 13 Pro Max
despite identical diffusion speed.tokenizer.model_max_length
) in the text token sequence regardless of the actual length of the input text.--compute-unit
and --attention-implementation
values per device. The former does not modify the Core ML model and can be applied during runtime. The latter modifies the Core ML model. Note that the best performing compute unit is model version and hardware-specific.--attention-implementation
) are generally applicable to Transformers and not customized to Stable Diffusion. Better performance may be observed upon custom kernel tuning. Therefore, these numbers do not represent peak HW capability.stabilityai/stable-diffusion-xl-base-1.0
(1024x1024)
Device | --compute-unit | --attention-implementation | End-to-End Latency (s) | Diffusion Speed (iter/s) |
---|---|---|---|---|
MacBook Pro (M1 Max) | CPU_AND_GPU | ORIGINAL | 46 | 0.46 |
MacBook Pro (M2 Max) | CPU_AND_GPU | ORIGINAL | 37 | 0.57 |
Mac Studio (M1 Ultra) | CPU_AND_GPU | ORIGINAL | 25 | 0.89 |
Mac Studio (M2 Ultra) | CPU_AND_GPU | ORIGINAL | 20 | 1.11 |
StableDiffusion
Swift pipeline.coremltools-7.0 supports advanced weight compression techniques for pruning, palettization and linear 8-bit quantization. For these techniques, coremltools.optimize.torch.*
includes APIs that require fine-tuning to maintain accuracy at higher compression rates whereas coremltools.optimize.coreml.*
includes APIs that are applied post-training and are data-free.
We demonstrate how data-free post-training palettization implemented in coremltools.optimize.coreml.palettize_weights
enables us to achieve greatly improved performance for Stable Diffusion on mobile devices. This API implements the Fast Exact k-Means algorithm for optimal weight clustering which yields more accurate palettes. Using --quantize-nbits {2,4,6,8}
during conversion is going to apply this compression to the unet and text_encoder models.
For best results, we recommend training-time palettization: coremltools.optimize.torch.palettization.DKMPalettizer
if fine-tuning your model is feasible. This API implements the Differentiable k-Means (DKM) learned palettization algorithm. In this exercise, we stick to post-training palettization for the sake of simplicity and ease of reproducibility.
The Neural Engine is capable of accelerating models with low-bit palettization: 1, 2, 4, 6 or 8 bits. With iOS 17 and macOS 14, compressed weights for Core ML models can be just-in-time decompressed during runtime (as opposed to ahead-of-time decompression upon load) to match the precision of activation tensors. This yields significant memory savings and enables models to run on devices with smaller RAM (e.g. iPhone 12 Mini). In addition, compressed weights are faster to fetch from memory which reduces the latency of memory bandwidth-bound layers. The just-in-time decompression behavior depends on the compute unit, layer type and hardware generation.
Weight Precision | --compute-unit | stabilityai/stable-diffusion-2-1-base generating "a high quality photo of a surfing dog" |
---|---|---|
6-bit | cpuAndNeuralEngine | <img src="assets/palette6_cpuandne_readmereel.png"> |
16-bit | cpuAndNeuralEngine | <img src="assets/float16_cpuandne_readmereel.png"> |
16-bit | cpuAndGPU | <img src="assets/float16_gpu_readmereel.png"> |
Note that there are minor differences across 16-bit (float16) and 6-bit results. These differences are comparable to the differences across float16 and float32 or differences across compute units as exemplified above. We recommend a minimum of 6 bits for palettizing Stable Diffusion. Smaller number of bits (1, 2 and 4) will require either fine-tuning or advanced palettization techniques such as MBP.
Resources:
This section describes an advanced compression algorithm called Mixed-Bit Palettization (MBP) built on top of the Post-Training Weight Palettization tools and using the Weights Metadata API from coremltools.
MBP builds a per-layer "palettization
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯