
多功 能开源视频生成工具库
VGen是一个功能丰富的开源视频生成工具库。它整合了多个先进的视频生成模型,可根据文本、图像、动作和主体等输入创建高质量视频。VGen提供可视化、采样、训练和推理等实用工具,支持图像到视频、文本到视频等多种任务。该项目具有良好的扩展性和完整性,由阿里巴巴集团通义实验室开发。

VGen is an open-source video synthesis codebase developed by the Tongyi Lab of Alibaba Group, featuring state-of-the-art video generative models. This repository includes implementations of the following methods:
VGen can produce high-quality videos from the input text, images, desired motion, desired subjects, and even the feedback signals provided. It also offers a variety of commonly used video generation tools such as visualization, sampling, training, inference, join training using images and videos, acceleration, and more.
<a href='https://i2vgen-xl.github.io/'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://arxiv.org/abs/2311.04145'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
<a href='https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441039979087.mp4'><img src='source/logo.png'></a>
The main features of VGen are as follows:
conda create -n vgen python=3.8
conda activate vgen
pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu113
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
You also need to ensure that your system has installed the ffmpeg command. If it is not installed, you can install it using the following command:
sudo apt-get update && apt-get install ffmpeg libsm6 libxext6 -y
We have provided a demo dataset that includes images and videos, along with their lists in data.
Please note that the demo images used here are for testing purposes and were not included in the training.
git clone https://github.com/ali-vilab/VGen.git
cd VGen
Executing the following command to enable distributed training is as easy as that.
python train_net.py --cfg configs/t2v_train.yaml
In the t2v_train.yaml configuration file, you can specify the data, adjust the video-to-image ratio using frame_lens, and validate your ideas with different Diffusion settings, and so on.
grad_scale settings, all of which are included in the Pretrain item in yaml file.workspace/experiments/t2v_traindirectory.After the training is completed, you can perform inference on the model using the following command.
python inference.py --cfg configs/t2v_infer.yaml
Then you can find the videos you generated in the workspace/experiments/test_img_01 directory. For specific configurations such as data, models, seed, etc., please refer to the t2v_infer.yaml file.
If you want to directly load our previously open-sourced Modelscope T2V model, please refer to this link.
<!-- <table> <center> <tr> <td ><center> <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441754174077.mp4"></video> </center></td> <td ><center> <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441138824052.mp4"></video> </center></td> </tr> </center> </table> </center> -->(i) Download model and test data:
!pip install modelscope
from modelscope.hub.snapshot_download import snapshot_download
model_dir = snapshot_download('damo/I2VGen-XL', cache_dir='models/', revision='v1.0.0')
or you can also download it through HuggingFace (https://huggingface.co/damo-vilab/i2vgen-xl):
# Make sure you have git-lfs installed (https://git-lfs.com)
git lfs install
git clone https://huggingface.co/damo-vilab/i2vgen-xl
(ii) Run the following command:
python inference.py --cfg configs/i2vgen_xl_infer.yaml
or you can run:
python inference.py --cfg configs/i2vgen_xl_infer.yaml test_list_path data/test_list_for_i2vgen.txt test_model models/i2vgen_xl_00854500.pth
The test_list_path represents the input image path and its corresponding caption. Please refer to the specific format and suggestions within demo file data/test_list_for_i2vgen.txt. test_model is the path for loading the model. In a few minutes, you can retrieve the high-definition video you wish to create from the workspace/experiments/test_list_for_i2vgen directory. At present, we find that the current model performs inadequately on anime images and images with a black background due to the lack of relevant training data. We are consistently working to optimize it.
(iii) Run the gradio app locally:
python gradio_app.py
(iv) Run the model on ModelScope and HuggingFace:
<span style="color:red">Due to the compression of our video quality in GIF format, please click 'HRER' below to view the original video.</span>
<center> <table> <center> <tr> <td ><center> <image height="260" src="https://img.alicdn.com/imgextra/i1/O1CN01CCEq7K1ZeLpNQqrWu_!!6000000003219-0-tps-1280-720.jpg"></image> </center></td> <td ><center> <!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442125067544.mp4"></video> --> <image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01hIQcvG1spmQMLqBo0_!!6000000005816-1-tps-1280-704.gif"></image> </center></td> </tr> <tr> <td ><center> <p>Input Image</p> </center></td> <td ><center> <p>Click <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442125067544.mp4">HERE</a> to view the generated video.</p> </center></td> </tr> <tr> <td ><center> <image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01ZXY7UN23K8q4oQ3uG_!!6000000007236-2-tps-1280-720.png"></image> </center></td> <td ><center> <!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441385957074.mp4"></video> --> <image height="260" src="https://img.alicdn.com/imgextra/i1/O1CN01iaSiiv1aJZURUEY53_!!6000000003309-1-tps-1280-704.gif"></image> </center></td> </tr> <tr> <td ><center> <p>Input Image</p> </center></td> <td ><center> <p>Click <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441385957074.mp4">HERE</a> to view the generated video.</p> </center></td> </tr> <tr> <td ><center> <image height="260" src="https://img.alicdn.com/imgextra/i3/O1CN01NHpVGl1oat4H54Hjf_!!6000000005242-2-tps-1280-720.png"></image> </center></td> <td ><center> <!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442102706767.mp4"></video> --> <!-- <image muted="true" height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01DgLj1T240jfpzKoaQ_!!6000000007329-1-tps-1280-704.gif"></image> --> <image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01DgLj1T240jfpzKoaQ_!!6000000007329-1-tps-1280-704.gif"></image> </center></td> </tr> <tr> <td ><center> <p>Input Image</p> </center></td> <td ><center> <p>Click <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442102706767.mp4">HERE</a> to view the generated video.</p> </center></td> </tr> <tr> <td ><center> <image height="260"

AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科 技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法 律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、 跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号