VGen

VGen

多功能开源视频生成工具库

VGen是一个功能丰富的开源视频生成工具库。它整合了多个先进的视频生成模型,可根据文本、图像、动作和主体等输入创建高质量视频。VGen提供可视化、采样、训练和推理等实用工具,支持图像到视频、文本到视频等多种任务。该项目具有良好的扩展性和完整性,由阿里巴巴集团通义实验室开发。

VGen视频生成AI模型开源项目阿里巴巴Github

VGen

figure1

VGen is an open-source video synthesis codebase developed by the Tongyi Lab of Alibaba Group, featuring state-of-the-art video generative models. This repository includes implementations of the following methods:

VGen can produce high-quality videos from the input text, images, desired motion, desired subjects, and even the feedback signals provided. It also offers a variety of commonly used video generation tools such as visualization, sampling, training, inference, join training using images and videos, acceleration, and more.

<a href='https://i2vgen-xl.github.io/'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://arxiv.org/abs/2311.04145'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a> Open in Spaces Paper page Open in Spaces YouTube <a href='https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441039979087.mp4'><img src='source/logo.png'></a> Replicate

🔥News!!!

  • [2024.06] We release the code and models of InstructVideo. InstructVideo enables the LoRA fine-tuning and inference in VGen. Feel free to use LoRA fine-tuning for other tasks.
  • [2024.04] We release the models of DreamVideo and ModelScopeT2V V1.5!!! ModelScopeT2V V1.5 is further fine-tuned on ModelScopeT2V for 365k iterations with more data.
  • [2024.04] We release the code and models of TF-T2V!
  • [2024.04] We release the code and models of VideoLCM!
  • [2024.03] We release the training and inference code of DreamVideo!
  • [2024.03] We release the code and model of HiGen!!
  • [2024.01] The gradio demo of I2VGen-XL has been completed in HuggingFace, thanks to our colleague @Wenmeng Zhou and @AK for the support, and welcome to try it out.
  • [2024.01] We support running the gradio app locally, thanks to our colleague @Wenmeng Zhou for the support and @AK for the suggestion, and welcome to have a try.
  • [2024.01] Thanks @Chenxi for supporting the running of i2vgen-xl on Replicate. Feel free to give it a try.
  • [2024.01] The gradio demo of I2VGen-XL has been completed in Modelscope, and welcome to try it out.
  • [2023.12] We have open-sourced the code and models for DreamTalk, which can produce high-quality talking head videos across diverse speaking styles using diffusion models.
  • [2023.12] We release TF-T2V that can scale up existing video generation techniques using text-free videos, significantly enhancing the performance of both Modelscope-T2V and VideoComposer at the same time.
  • [2023.12] We updated the codebase to support higher versions of xformer (0.0.22), torch2.0+, and removed the dependency on flash_attn.
  • [2023.12] We release InstructVideo that can accept human feedback signals to improve VLDM
  • [2023.12] We release the diffusion based expressive talking head generation DreamTalk
  • [2023.12] We release the high-efficiency video generation method VideoLCM
  • [2023.12] We release the code and model of I2VGen-XL and the ModelScope T2V
  • [2023.12] We release the T2V method HiGen and customizing T2V method DreamVideo.
  • [2023.12] We write an introduction document for VGen and compare I2VGen-XL with SVD.
  • [2023.11] We release a high-quality I2VGen-XL model, please refer to the Webpage

TODO

  • Release the technical papers and webpage of I2VGen-XL
  • Release the code and pretrained models that can generate 1280x720 videos
  • Release the code and models of DreamTalk that can generate expressive talking head
  • Release the code and pretrained models of HumanDiff
  • Release models optimized specifically for the human body and faces
  • Updated version can fully maintain the ID and capture large and accurate motions simultaneously
  • Release other methods and the corresponding models

Preparation

The main features of VGen are as follows:

  • Expandability, allowing for easy management of your own experiments.
  • Completeness, encompassing all common components for video generation.
  • Excellent performance, featuring powerful pre-trained models in multiple tasks.

Installation

conda create -n vgen python=3.8
conda activate vgen
pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu113
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

You also need to ensure that your system has installed the ffmpeg command. If it is not installed, you can install it using the following command:

sudo apt-get update && apt-get install ffmpeg libsm6 libxext6  -y

Datasets

We have provided a demo dataset that includes images and videos, along with their lists in data.

Please note that the demo images used here are for testing purposes and were not included in the training.

Clone the code

git clone https://github.com/ali-vilab/VGen.git
cd VGen

Getting Started with VGen

(1) Train your text-to-video model

Executing the following command to enable distributed training is as easy as that.

python train_net.py --cfg configs/t2v_train.yaml

In the t2v_train.yaml configuration file, you can specify the data, adjust the video-to-image ratio using frame_lens, and validate your ideas with different Diffusion settings, and so on.

  • Before the training, you can download any of our open-source models for initialization. Our codebase supports custom initialization and grad_scale settings, all of which are included in the Pretrain item in yaml file.
  • During the training, you can view the saved models and intermediate inference results in the workspace/experiments/t2v_traindirectory.

After the training is completed, you can perform inference on the model using the following command.

python inference.py --cfg configs/t2v_infer.yaml

Then you can find the videos you generated in the workspace/experiments/test_img_01 directory. For specific configurations such as data, models, seed, etc., please refer to the t2v_infer.yaml file.

If you want to directly load our previously open-sourced Modelscope T2V model, please refer to this link.

<!-- <table> <center> <tr> <td ><center> <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441754174077.mp4"></video> </center></td> <td ><center> <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441138824052.mp4"></video> </center></td> </tr> </center> </table> </center> -->

(2) Run the I2VGen-XL model

(i) Download model and test data:

!pip install modelscope
from modelscope.hub.snapshot_download import snapshot_download
model_dir = snapshot_download('damo/I2VGen-XL', cache_dir='models/', revision='v1.0.0')

or you can also download it through HuggingFace (https://huggingface.co/damo-vilab/i2vgen-xl):

# Make sure you have git-lfs installed (https://git-lfs.com)
git lfs install
git clone https://huggingface.co/damo-vilab/i2vgen-xl

(ii) Run the following command:

python inference.py --cfg configs/i2vgen_xl_infer.yaml

or you can run:

python inference.py --cfg configs/i2vgen_xl_infer.yaml  test_list_path data/test_list_for_i2vgen.txt test_model models/i2vgen_xl_00854500.pth

The test_list_path represents the input image path and its corresponding caption. Please refer to the specific format and suggestions within demo file data/test_list_for_i2vgen.txt. test_model is the path for loading the model. In a few minutes, you can retrieve the high-definition video you wish to create from the workspace/experiments/test_list_for_i2vgen directory. At present, we find that the current model performs inadequately on anime images and images with a black background due to the lack of relevant training data. We are consistently working to optimize it.

(iii) Run the gradio app locally:

python gradio_app.py

(iv) Run the model on ModelScope and HuggingFace:

<span style="color:red">Due to the compression of our video quality in GIF format, please click 'HRER' below to view the original video.</span>

<center> <table> <center> <tr> <td ><center> <image height="260" src="https://img.alicdn.com/imgextra/i1/O1CN01CCEq7K1ZeLpNQqrWu_!!6000000003219-0-tps-1280-720.jpg"></image> </center></td> <td ><center> <!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442125067544.mp4"></video> --> <image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01hIQcvG1spmQMLqBo0_!!6000000005816-1-tps-1280-704.gif"></image> </center></td> </tr> <tr> <td ><center> <p>Input Image</p> </center></td> <td ><center> <p>Click <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442125067544.mp4">HERE</a> to view the generated video.</p> </center></td> </tr> <tr> <td ><center> <image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01ZXY7UN23K8q4oQ3uG_!!6000000007236-2-tps-1280-720.png"></image> </center></td> <td ><center> <!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441385957074.mp4"></video> --> <image height="260" src="https://img.alicdn.com/imgextra/i1/O1CN01iaSiiv1aJZURUEY53_!!6000000003309-1-tps-1280-704.gif"></image> </center></td> </tr> <tr> <td ><center> <p>Input Image</p> </center></td> <td ><center> <p>Click <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441385957074.mp4">HERE</a> to view the generated video.</p> </center></td> </tr> <tr> <td ><center> <image height="260" src="https://img.alicdn.com/imgextra/i3/O1CN01NHpVGl1oat4H54Hjf_!!6000000005242-2-tps-1280-720.png"></image> </center></td> <td ><center> <!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442102706767.mp4"></video> --> <!-- <image muted="true" height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01DgLj1T240jfpzKoaQ_!!6000000007329-1-tps-1280-704.gif"></image> --> <image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01DgLj1T240jfpzKoaQ_!!6000000007329-1-tps-1280-704.gif"></image> </center></td> </tr> <tr> <td ><center> <p>Input Image</p> </center></td> <td ><center> <p>Click <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442102706767.mp4">HERE</a> to view the generated video.</p> </center></td> </tr> <tr> <td ><center> <image height="260"

编辑推荐精选

问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多