Tesseract4Android

Tesseract4Android

基于 Tesseract 的 Android OCR 库 支持多线程识别

Tesseract4Android 是一个重写的 Android OCR 库,基于 tess-two 项目。该库采用 CMake 构建,兼容最新 Android Studio,集成 Tesseract OCR 5.3.4。它提供标准单线程和 OpenMP 多线程两个版本,满足不同性能需求。Tesseract4Android 简化了 OCR 技术在 Android 应用中的使用,支持多语言识别,并附带示例应用展示基本用法。

Tesseract4AndroidOCRAndroid开发图像识别文字识别Github开源项目

Tesseract4Android

Fork of tess-two rewritten from scratch to build with CMake and support latest Android Studio and Tesseract OCR.

The Java/JNI wrapper files and tests for Leptonica / Tesseract are based on the tess-two project, which is based on Tesseract Tools for Android.

Dependencies

This project uses additional libraries (with their own specific licenses):

Prerequisites

  • Android 4.1 (API 16) or higher
  • A v4.0.0 trained data file(s) for language(s) you want to use.
    • These files must be placed in the (sub)directory named tessdata and the path must be readable by the app. When targeting API >=29, only suitable places for this are app's private directories (like context.getFilesDir() or context.getExternalFilesDir()).

Variants

This library is available in two variants.

  • Standard - Single-threaded. Best for single-core processors or when using multiple Tesseract instances in parallel.
  • OpenMP - Multi-threaded. Provides better performance on multi-core processors when using only single instance of Tesseract.

Usage

You can get compiled version of Tesseract4Android from JitPack.io.

  1. Add the JitPack repository to your project root build.gradle file at the end of repositories:
allprojects { repositories { ... maven { url 'https://jitpack.io' } } }
  1. Add the dependency to your app module build.gradle file:
dependencies { // To use Standard variant: implementation 'cz.adaptech.tesseract4android:tesseract4android:4.7.0' // To use OpenMP variant: implementation 'cz.adaptech.tesseract4android:tesseract4android-openmp:4.7.0' }
  1. Use the TessBaseAPI class in your code:

This is the simplest example you can have. In this case TessBaseAPI is always created, used to recognize the image and then destroyed. Better would be to create and initialize the instance only once and use it to recognize multiple images instead. Look at the sample project for such usage, additionally with progress notifications and a way to stop the ongoing processing.

// Create TessBaseAPI instance (this internally creates the native Tesseract instance) TessBaseAPI tess = new TessBaseAPI(); // Given path must contain subdirectory `tessdata` where are `*.traineddata` language files // The path must be directly readable by the app String dataPath = new File(context.getFilesDir(), "tesseract").getAbsolutePath(); // Initialize API for specified language // (can be called multiple times during Tesseract lifetime) if (!tess.init(dataPath, "eng")) { // could be multiple languages, like "eng+deu+fra" // Error initializing Tesseract (wrong/inaccessible data path or not existing language file(s)) // Release the native Tesseract instance tess.recycle(); return; } // Load the image (file path, Bitmap, Pix...) // (can be called multiple times during Tesseract lifetime) tess.setImage(image); // Start the recognition (if not done for this image yet) and retrieve the result // (can be called multiple times during Tesseract lifetime) String text = tess.getUTF8Text(); // Release the native Tesseract instance when you don't want to use it anymore // After this call, no method can be called on this TessBaseAPI instance tess.recycle();

Sample app

There is example application in the sample directory. It shows basic usage of the TessBaseAPI inside ViewModel, showing progress indication, allowing stopping the processing and more.

It uses sample image and english traineddata, which are extracted from the assets in the APK to app's private directory on device. This is simple, but you are keeping 2 instances of the data file (first is kept in the APK file itself, second is kept on the storage) - wasting some space. If you plan to use multiple traineddata files, it would be better to download them directly from the internet rather than distributing them within the APK.

Building

You can use Android Studio to open the project and build the AAR. Or you can use gradlew from command line.

To build the release version of the library, use task tesseract4android:assembleRelease. After successful build, you will have resulting AAR files in the <project dir>/tesseract4Android/build/outputs/aar/ directory.

Or you can publish the AAR directly to your local maven repository, by using task tesseract4android:publishToMavenLocal. After successful build, you can consume your library as any other maven dependency. Just make sure to add mavenLocal() repository in repositories {} block in your project's build.gradle file.

Android Studio

  • Open this project in Android Studio.
  • Open Gradle panel, expand Tesseract4Android / :tesseract4Android / Tasks / other and run assembleRelease (to get AAR).
  • Or in the same panel expand Tesseract4Android / :tesseract4Android / Tasks / publishing and run publishToMavenLocal (to publish AAR).

GradleW

  • In project directory create local.properties file containing:
sdk.dir=c\:\\your\\path\\to\\android\\sdk ndk.dir=c\:\\your\\path\\to\\android\\ndk

Note for paths on Windows you must use \ to escape some special characters, as in example above.

  • Call gradlew tesseract4android:assembleRelease from command line (to get AAR).
  • Or call gradlew tesseract4android:publishToMavenLocal from command line (to publish AAR).

License

Copyright 2019 Adaptech s.r.o., Robert Pösel

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

编辑推荐精选

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

下拉加载更多