Tesseract4Android

Tesseract4Android

基于 Tesseract 的 Android OCR 库 支持多线程识别

Tesseract4Android 是一个重写的 Android OCR 库,基于 tess-two 项目。该库采用 CMake 构建,兼容最新 Android Studio,集成 Tesseract OCR 5.3.4。它提供标准单线程和 OpenMP 多线程两个版本,满足不同性能需求。Tesseract4Android 简化了 OCR 技术在 Android 应用中的使用,支持多语言识别,并附带示例应用展示基本用法。

Tesseract4AndroidOCRAndroid开发图像识别文字识别Github开源项目

Tesseract4Android

Fork of tess-two rewritten from scratch to build with CMake and support latest Android Studio and Tesseract OCR.

The Java/JNI wrapper files and tests for Leptonica / Tesseract are based on the tess-two project, which is based on Tesseract Tools for Android.

Dependencies

This project uses additional libraries (with their own specific licenses):

Prerequisites

  • Android 4.1 (API 16) or higher
  • A v4.0.0 trained data file(s) for language(s) you want to use.
    • These files must be placed in the (sub)directory named tessdata and the path must be readable by the app. When targeting API >=29, only suitable places for this are app's private directories (like context.getFilesDir() or context.getExternalFilesDir()).

Variants

This library is available in two variants.

  • Standard - Single-threaded. Best for single-core processors or when using multiple Tesseract instances in parallel.
  • OpenMP - Multi-threaded. Provides better performance on multi-core processors when using only single instance of Tesseract.

Usage

You can get compiled version of Tesseract4Android from JitPack.io.

  1. Add the JitPack repository to your project root build.gradle file at the end of repositories:
allprojects { repositories { ... maven { url 'https://jitpack.io' } } }
  1. Add the dependency to your app module build.gradle file:
dependencies { // To use Standard variant: implementation 'cz.adaptech.tesseract4android:tesseract4android:4.7.0' // To use OpenMP variant: implementation 'cz.adaptech.tesseract4android:tesseract4android-openmp:4.7.0' }
  1. Use the TessBaseAPI class in your code:

This is the simplest example you can have. In this case TessBaseAPI is always created, used to recognize the image and then destroyed. Better would be to create and initialize the instance only once and use it to recognize multiple images instead. Look at the sample project for such usage, additionally with progress notifications and a way to stop the ongoing processing.

// Create TessBaseAPI instance (this internally creates the native Tesseract instance) TessBaseAPI tess = new TessBaseAPI(); // Given path must contain subdirectory `tessdata` where are `*.traineddata` language files // The path must be directly readable by the app String dataPath = new File(context.getFilesDir(), "tesseract").getAbsolutePath(); // Initialize API for specified language // (can be called multiple times during Tesseract lifetime) if (!tess.init(dataPath, "eng")) { // could be multiple languages, like "eng+deu+fra" // Error initializing Tesseract (wrong/inaccessible data path or not existing language file(s)) // Release the native Tesseract instance tess.recycle(); return; } // Load the image (file path, Bitmap, Pix...) // (can be called multiple times during Tesseract lifetime) tess.setImage(image); // Start the recognition (if not done for this image yet) and retrieve the result // (can be called multiple times during Tesseract lifetime) String text = tess.getUTF8Text(); // Release the native Tesseract instance when you don't want to use it anymore // After this call, no method can be called on this TessBaseAPI instance tess.recycle();

Sample app

There is example application in the sample directory. It shows basic usage of the TessBaseAPI inside ViewModel, showing progress indication, allowing stopping the processing and more.

It uses sample image and english traineddata, which are extracted from the assets in the APK to app's private directory on device. This is simple, but you are keeping 2 instances of the data file (first is kept in the APK file itself, second is kept on the storage) - wasting some space. If you plan to use multiple traineddata files, it would be better to download them directly from the internet rather than distributing them within the APK.

Building

You can use Android Studio to open the project and build the AAR. Or you can use gradlew from command line.

To build the release version of the library, use task tesseract4android:assembleRelease. After successful build, you will have resulting AAR files in the <project dir>/tesseract4Android/build/outputs/aar/ directory.

Or you can publish the AAR directly to your local maven repository, by using task tesseract4android:publishToMavenLocal. After successful build, you can consume your library as any other maven dependency. Just make sure to add mavenLocal() repository in repositories {} block in your project's build.gradle file.

Android Studio

  • Open this project in Android Studio.
  • Open Gradle panel, expand Tesseract4Android / :tesseract4Android / Tasks / other and run assembleRelease (to get AAR).
  • Or in the same panel expand Tesseract4Android / :tesseract4Android / Tasks / publishing and run publishToMavenLocal (to publish AAR).

GradleW

  • In project directory create local.properties file containing:
sdk.dir=c\:\\your\\path\\to\\android\\sdk ndk.dir=c\:\\your\\path\\to\\android\\ndk

Note for paths on Windows you must use \ to escape some special characters, as in example above.

  • Call gradlew tesseract4android:assembleRelease from command line (to get AAR).
  • Or call gradlew tesseract4android:publishToMavenLocal from command line (to publish AAR).

License

Copyright 2019 Adaptech s.r.o., Robert Pösel

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多