Awesome-LLM

Awesome-LLM

全面汇总大型语言模型研究进展与资源

Awesome-LLM项目汇集了大型语言模型(LLM)领域的核心资源,包括关键论文、开源模型、训练框架及应用案例。该项目系统梳理了从GPT到当前最新LLM的技术演进,为研究者和开发者提供全面的学习参考。项目内容涵盖LLM历史发展、前沿突破及实践应用,是了解和探索LLM技术的重要资料库。

大语言模型ChatGPT人工智能自然语言处理深度学习Github开源项目

Awesome-LLM Awesome

🔥 Large Language Models(LLM) have taken the NLP community AI community the Whole World by storm. Here is a curated list of papers about large language models, especially relating to ChatGPT. It also contains frameworks for LLM training, tools to deploy LLM, courses and tutorials about LLM and all publicly available LLM checkpoints and APIs.

Trending LLM Projects

  • Deep-Live-Cam - real time face swap and one-click video deepfake with only a single image (uncensored).
  • MiniCPM-V 2.6 - A GPT-4V Level MLLM for Single Image, Multi Image and Video on Your Phone
  • GPT-SoVITS - 1 min voice data can also be used to train a good TTS model! (few shot voice cloning).

Table of Content

Milestone Papers

DatekeywordsInstitutePaper
2017-06TransformersGoogleAttention Is All You Need
2018-06GPT 1.0OpenAIImproving Language Understanding by Generative Pre-Training
2018-10BERTGoogleBERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
2019-02GPT 2.0OpenAILanguage Models are Unsupervised Multitask Learners
2019-09Megatron-LMNVIDIAMegatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
2019-10T5GoogleExploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
2019-10ZeROMicrosoftZeRO: Memory Optimizations Toward Training Trillion Parameter Models
2020-01Scaling LawOpenAIScaling Laws for Neural Language Models
2020-05GPT 3.0OpenAILanguage models are few-shot learners
2021-01Switch TransformersGoogleSwitch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
2021-08CodexOpenAIEvaluating Large Language Models Trained on Code
2021-08Foundation ModelsStanfordOn the Opportunities and Risks of Foundation Models
2021-09FLANGoogleFinetuned Language Models are Zero-Shot Learners
2021-10T0HuggingFace et al.Multitask Prompted Training Enables Zero-Shot Task Generalization
2021-12GLaMGoogleGLaM: Efficient Scaling of Language Models with Mixture-of-Experts
2021-12WebGPTOpenAIWebGPT: Browser-assisted question-answering with human feedback
2021-12RetroDeepMindImproving language models by retrieving from trillions of tokens
2021-12GopherDeepMindScaling Language Models: Methods, Analysis & Insights from Training Gopher
2022-01COTGoogleChain-of-Thought Prompting Elicits Reasoning in Large Language Models
2022-01LaMDAGoogleLaMDA: Language Models for Dialog Applications
2022-01MinervaGoogleSolving Quantitative Reasoning Problems with Language Models
2022-01Megatron-Turing NLGMicrosoft&NVIDIAUsing Deep and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model
2022-03InstructGPTOpenAITraining language models to follow instructions with human feedback
2022-04PaLMGooglePaLM: Scaling Language Modeling with Pathways
2022-04ChinchillaDeepMindAn empirical analysis of compute-optimal large language model training
2022-05OPTMetaOPT: Open Pre-trained Transformer Language Models
2022-05UL2GoogleUnifying Language Learning Paradigms
2022-06Emergent AbilitiesGoogleEmergent Abilities of Large Language Models
2022-06BIG-benchGoogleBeyond the Imitation Game: Quantifying and extrapolating the capabilities of language models
2022-06METALMMicrosoftLanguage Models are General-Purpose Interfaces
2022-09SparrowDeepMindImproving alignment of dialogue agents via targeted human judgements
2022-10Flan-T5/PaLMGoogleScaling Instruction-Finetuned Language Models
2022-10GLM-130BTsinghuaGLM-130B: An Open Bilingual Pre-trained Model
2022-11HELMStanfordHolistic Evaluation of Language Models
2022-11BLOOMBigScienceBLOOM: A 176B-Parameter Open-Access Multilingual Language Model
2022-11GalacticaMetaGalactica: A Large Language Model for Science
2022-12OPT-IMLMetaOPT-IML: Scaling Language Model Instruction Meta Learning through the Lens of Generalization
2023-01Flan 2022 CollectionGoogleThe Flan Collection: Designing Data and Methods for Effective Instruction Tuning
2023-02LLaMAMetaLLaMA: Open and Efficient Foundation Language Models
2023-02Kosmos-1MicrosoftLanguage Is Not All You Need: Aligning Perception with Language Models
2023-03LRUDeepMindResurrecting Recurrent Neural Networks for Long Sequences
2023-03PaLM-EGooglePaLM-E: An Embodied Multimodal Language Model
2023-03GPT 4OpenAIGPT-4 Technical Report
2023-04LLaVAUW–Madison&MicrosoftVisual Instruction Tuning
2023-04PythiaEleutherAI et al.Pythia: A Suite for Analyzing Large Language Models Across Training and Scaling
2023-05DromedaryCMU et al.Principle-Driven Self-Alignment of Language Models from Scratch with Minimal Human Supervision
2023-05PaLM 2GooglePaLM 2 Technical Report
2023-05RWKVBo PengRWKV: Reinventing RNNs for the Transformer Era
2023-05DPOStanfordDirect Preference Optimization: Your Language Model is Secretly a Reward Model
2023-05ToTGoogle&PrincetonTree of Thoughts: Deliberate Problem Solving with Large Language Models
2023-07LLaMA2MetaLlama 2: Open Foundation and Fine-Tuned Chat Models
2023-10Mistral 7BMistralMistral 7B
2023-12MambaCMU&PrincetonMamba: Linear-Time Sequence Modeling with Selective State Spaces
2024-01DeepSeek-v2DeepSeekDeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
2024-03JambaAI21 LabsJamba: A Hybrid Transformer-Mamba Language Model
2024-05Mamba2CMU&PrincetonTransformers are SSMs: Generalized Models and Efficient Algorithms Through Structured State Space Duality
2024-05Llama3MetaThe Llama 3 Herd of Models

Other Papers

If you're interested in the field of LLM, you may find the above list of milestone papers helpful to explore its history and state-of-the-art. However, each direction of LLM offers a unique set of insights and contributions, which are essential to understanding the field as a whole. For a detailed list of papers in various subfields, please refer to the following link:

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多