Awesome-LLM

Awesome-LLM

全面汇总大型语言模型研究进展与资源

Awesome-LLM项目汇集了大型语言模型(LLM)领域的核心资源,包括关键论文、开源模型、训练框架及应用案例。该项目系统梳理了从GPT到当前最新LLM的技术演进,为研究者和开发者提供全面的学习参考。项目内容涵盖LLM历史发展、前沿突破及实践应用,是了解和探索LLM技术的重要资料库。

大语言模型ChatGPT人工智能自然语言处理深度学习Github开源项目

Awesome-LLM Awesome

🔥 Large Language Models(LLM) have taken the NLP community AI community the Whole World by storm. Here is a curated list of papers about large language models, especially relating to ChatGPT. It also contains frameworks for LLM training, tools to deploy LLM, courses and tutorials about LLM and all publicly available LLM checkpoints and APIs.

Trending LLM Projects

  • Deep-Live-Cam - real time face swap and one-click video deepfake with only a single image (uncensored).
  • MiniCPM-V 2.6 - A GPT-4V Level MLLM for Single Image, Multi Image and Video on Your Phone
  • GPT-SoVITS - 1 min voice data can also be used to train a good TTS model! (few shot voice cloning).

Table of Content

Milestone Papers

DatekeywordsInstitutePaper
2017-06TransformersGoogleAttention Is All You Need
2018-06GPT 1.0OpenAIImproving Language Understanding by Generative Pre-Training
2018-10BERTGoogleBERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
2019-02GPT 2.0OpenAILanguage Models are Unsupervised Multitask Learners
2019-09Megatron-LMNVIDIAMegatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
2019-10T5GoogleExploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
2019-10ZeROMicrosoftZeRO: Memory Optimizations Toward Training Trillion Parameter Models
2020-01Scaling LawOpenAIScaling Laws for Neural Language Models
2020-05GPT 3.0OpenAILanguage models are few-shot learners
2021-01Switch TransformersGoogleSwitch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
2021-08CodexOpenAIEvaluating Large Language Models Trained on Code
2021-08Foundation ModelsStanfordOn the Opportunities and Risks of Foundation Models
2021-09FLANGoogleFinetuned Language Models are Zero-Shot Learners
2021-10T0HuggingFace et al.Multitask Prompted Training Enables Zero-Shot Task Generalization
2021-12GLaMGoogleGLaM: Efficient Scaling of Language Models with Mixture-of-Experts
2021-12WebGPTOpenAIWebGPT: Browser-assisted question-answering with human feedback
2021-12RetroDeepMindImproving language models by retrieving from trillions of tokens
2021-12GopherDeepMindScaling Language Models: Methods, Analysis & Insights from Training Gopher
2022-01COTGoogleChain-of-Thought Prompting Elicits Reasoning in Large Language Models
2022-01LaMDAGoogleLaMDA: Language Models for Dialog Applications
2022-01MinervaGoogleSolving Quantitative Reasoning Problems with Language Models
2022-01Megatron-Turing NLGMicrosoft&NVIDIAUsing Deep and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model
2022-03InstructGPTOpenAITraining language models to follow instructions with human feedback
2022-04PaLMGooglePaLM: Scaling Language Modeling with Pathways
2022-04ChinchillaDeepMindAn empirical analysis of compute-optimal large language model training
2022-05OPTMetaOPT: Open Pre-trained Transformer Language Models
2022-05UL2GoogleUnifying Language Learning Paradigms
2022-06Emergent AbilitiesGoogleEmergent Abilities of Large Language Models
2022-06BIG-benchGoogleBeyond the Imitation Game: Quantifying and extrapolating the capabilities of language models
2022-06METALMMicrosoftLanguage Models are General-Purpose Interfaces
2022-09SparrowDeepMindImproving alignment of dialogue agents via targeted human judgements
2022-10Flan-T5/PaLMGoogleScaling Instruction-Finetuned Language Models
2022-10GLM-130BTsinghuaGLM-130B: An Open Bilingual Pre-trained Model
2022-11HELMStanfordHolistic Evaluation of Language Models
2022-11BLOOMBigScienceBLOOM: A 176B-Parameter Open-Access Multilingual Language Model
2022-11GalacticaMetaGalactica: A Large Language Model for Science
2022-12OPT-IMLMetaOPT-IML: Scaling Language Model Instruction Meta Learning through the Lens of Generalization
2023-01Flan 2022 CollectionGoogleThe Flan Collection: Designing Data and Methods for Effective Instruction Tuning
2023-02LLaMAMetaLLaMA: Open and Efficient Foundation Language Models
2023-02Kosmos-1MicrosoftLanguage Is Not All You Need: Aligning Perception with Language Models
2023-03LRUDeepMindResurrecting Recurrent Neural Networks for Long Sequences
2023-03PaLM-EGooglePaLM-E: An Embodied Multimodal Language Model
2023-03GPT 4OpenAIGPT-4 Technical Report
2023-04LLaVAUW–Madison&MicrosoftVisual Instruction Tuning
2023-04PythiaEleutherAI et al.Pythia: A Suite for Analyzing Large Language Models Across Training and Scaling
2023-05DromedaryCMU et al.Principle-Driven Self-Alignment of Language Models from Scratch with Minimal Human Supervision
2023-05PaLM 2GooglePaLM 2 Technical Report
2023-05RWKVBo PengRWKV: Reinventing RNNs for the Transformer Era
2023-05DPOStanfordDirect Preference Optimization: Your Language Model is Secretly a Reward Model
2023-05ToTGoogle&PrincetonTree of Thoughts: Deliberate Problem Solving with Large Language Models
2023-07LLaMA2MetaLlama 2: Open Foundation and Fine-Tuned Chat Models
2023-10Mistral 7BMistralMistral 7B
2023-12MambaCMU&PrincetonMamba: Linear-Time Sequence Modeling with Selective State Spaces
2024-01DeepSeek-v2DeepSeekDeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
2024-03JambaAI21 LabsJamba: A Hybrid Transformer-Mamba Language Model
2024-05Mamba2CMU&PrincetonTransformers are SSMs: Generalized Models and Efficient Algorithms Through Structured State Space Duality
2024-05Llama3MetaThe Llama 3 Herd of Models

Other Papers

If you're interested in the field of LLM, you may find the above list of milestone papers helpful to explore its history and state-of-the-art. However, each direction of LLM offers a unique set of insights and contributions, which are essential to understanding the field as a whole. For a detailed list of papers in various subfields, please refer to the following link:

编辑推荐精选

蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多