kaniko

kaniko

Kubernetes环境中构建容器镜像的无Docker方案

kaniko是一款创新的容器镜像构建工具,专为Kubernetes等环境设计。它摒弃了对Docker守护进程的依赖,通过在用户空间执行Dockerfile命令来构建镜像。这种方法使kaniko能在传统Docker难以安全运行的环境中工作。kaniko支持多样化的构建上下文,内置缓存机制,并能将镜像推送到各类容器注册表。其灵活性和安全性使其成为现代容器化环境中的理想选择。

kaniko容器镜像构建KubernetesDockerfile无Docker守护进程Github开源项目

kaniko - Build Images In Kubernetes

🚨NOTE: kaniko is not an officially supported Google product🚨

Unit tests Integration tests Build images Go Report Card

kaniko logo

kaniko is a tool to build container images from a Dockerfile, inside a container or Kubernetes cluster.

kaniko doesn't depend on a Docker daemon and executes each command within a Dockerfile completely in userspace. This enables building container images in environments that can't easily or securely run a Docker daemon, such as a standard Kubernetes cluster.

kaniko is meant to be run as an image: gcr.io/kaniko-project/executor. We do not recommend running the kaniko executor binary in another image, as it might not work as you expect - see Known Issues.

We'd love to hear from you! Join us on #kaniko Kubernetes Slack

:mega: Please fill out our quick 5-question survey so that we can learn how satisfied you are with kaniko, and what improvements we should make. Thank you! :dancers:

If you are interested in contributing to kaniko, see DEVELOPMENT.md and CONTRIBUTING.md.

<!-- START doctoc generated TOC please keep comment here to allow auto update --> <!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->

Table of Contents generated with DocToc

<!-- END doctoc generated TOC please keep comment here to allow auto update -->

Community

We'd love to hear from you! Join #kaniko on Kubernetes Slack

How does kaniko work?

The kaniko executor image is responsible for building an image from a Dockerfile and pushing it to a registry. Within the executor image, we extract the filesystem of the base image (the FROM image in the Dockerfile). We then execute the commands in the Dockerfile, snapshotting the filesystem in userspace after each one. After each command, we append a layer of changed files to the base image (if there are any) and update image metadata.

Known Issues

  • kaniko does not support building Windows containers.
  • Running kaniko in any Docker image other than the official kaniko image is not supported due to implementation details.
    • This includes copying the kaniko executables from the official image into another image (e.g. a Jenkins CI agent).
    • In particular, it cannot use chroot or bind-mount because its container must not require privilege, so it unpacks directly into its own container root and may overwrite anything already there.
  • kaniko does not support the v1 Registry API (Registry v1 API Deprecation)

Demo

Demo

Tutorial

For a detailed example of kaniko with local storage, please refer to a getting started tutorial.

Please see References for more docs & video tutorials

Using kaniko

To use kaniko to build and push an image for you, you will need:

  1. A build context, aka something to build
  2. A running instance of kaniko

kaniko Build Contexts

kaniko's build context is very similar to the build context you would send your Docker daemon for an image build; it represents a directory containing a Dockerfile which kaniko will use to build your image. For example, a COPY command in your Dockerfile should refer to a file in the build context.

You will need to store your build context in a place that kaniko can access. Right now, kaniko supports these storage solutions:

  • GCS Bucket
  • S3 Bucket
  • Azure Blob Storage
  • Local Directory
  • Local Tar
  • Standard Input
  • Git Repository

Note about Local Directory: this option refers to a directory within the kaniko container. If you wish to use this option, you will need to mount in your build context into the container as a directory.

Note about Local Tar: this option refers to a tar gz file within the kaniko container. If you wish to use this option, you will need to mount in your build context into the container as a file.

Note about Standard Input: the only Standard Input allowed by kaniko is in .tar.gz format.

If using a GCS or S3 bucket, you will first need to create a compressed tar of your build context and upload it to your bucket. Once running, kaniko will then download and unpack the compressed tar of the build context before starting the image build.

To create a compressed tar, you can run:

tar -C <path to build context> -zcvf context.tar.gz .

Then, copy over the compressed tar into your bucket. For example, we can copy over the compressed tar to a GCS bucket with gsutil:

gsutil cp context.tar.gz gs://<bucket name>

When running kaniko, use the --context flag with the appropriate prefix to specify the location of your build context:

SourcePrefixExample
Local Directorydir://[path to a directory in the kaniko container]dir:///workspace
Local Tar Gztar://[path to a .tar.gz in the kaniko container]tar:///path/to/context.tar.gz
Standard Inputtar://[stdin]tar://stdin
GCS Bucketgs://[bucket name]/[path to .tar.gz]gs://kaniko-bucket/path/to/context.tar.gz
S3 Buckets3://[bucket name]/[path to .tar.gz]s3://kaniko-bucket/path/to/context.tar.gz
Azure Blob Storagehttps://[account].[azureblobhostsuffix]/[container]/[path to .tar.gz]https://myaccount.blob.core.windows.net/container/path/to/context.tar.gz
Git Repositorygit://[repository url][#reference][#commit-id]git://github.com/acme/myproject.git#refs/heads/mybranch#<desired-commit-id>

If you don't specify a prefix, kaniko will assume a local directory. For example, to use a GCS bucket called kaniko-bucket, you would pass in --context=gs://kaniko-bucket/path/to/context.tar.gz.

Using Azure Blob Storage

If you are using Azure Blob Storage for context file, you will need to pass Azure Storage Account Access Key as an environment variable named AZURE_STORAGE_ACCESS_KEY through Kubernetes Secrets

Using Private Git Repository

You can use Personal Access Tokens for Build Contexts from Private Repositories from GitHub.

You can either pass this in as part of the git URL (e.g., git://TOKEN@github.com/acme/myproject.git#refs/heads/mybranch) or using the environment variable GIT_TOKEN.

You can also pass GIT_USERNAME and GIT_PASSWORD (password being the token) if you want to be explicit about the username.

Using Standard Input

If running kaniko and using Standard Input build context, you will need to add the docker or kubernetes -i, --interactive flag. Once running, kaniko will then get the data from STDIN and create the build context as a compressed tar. It will then unpack the compressed tar of the build context before starting the image build. If no data is piped during the interactive run, you will need to send the EOF signal by yourself by pressing Ctrl+D.

Complete example of how to interactively run kaniko with .tar.gz Standard Input data, using docker:

echo -e 'FROM alpine \nRUN echo "created from standard input"' > Dockerfile | tar -cf - Dockerfile | gzip -9 | docker run \ --interactive -v $(pwd):/workspace gcr.io/kaniko-project/executor:latest \ --context tar://stdin \ --destination=<gcr.io/$project/$image:$tag>

Complete example of how to interactively run kaniko with .tar.gz Standard Input data, using Kubernetes command line with a temporary container and completely dockerless:

echo -e 'FROM alpine \nRUN echo "created from standard input"' > Dockerfile | tar -cf - Dockerfile | gzip -9 | kubectl run kaniko \ --rm --stdin=true \ --image=gcr.io/kaniko-project/executor:latest --restart=Never \ --overrides='{ "apiVersion": "v1", "spec": { "containers": [ { "name": "kaniko", "image": "gcr.io/kaniko-project/executor:latest", "stdin": true, "stdinOnce": true, "args": [ "--dockerfile=Dockerfile", "--context=tar://stdin", "--destination=gcr.io/my-repo/my-image" ], "volumeMounts": [ { "name": "cabundle", "mountPath": "/kaniko/ssl/certs/" }, { "name": "docker-config", "mountPath": "/kaniko/.docker/" } ] } ], "volumes": [ { "name": "cabundle", "configMap": { "name": "cabundle" } }, {

编辑推荐精选

蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多