kaniko

kaniko

Kubernetes环境中构建容器镜像的无Docker方案

kaniko是一款创新的容器镜像构建工具,专为Kubernetes等环境设计。它摒弃了对Docker守护进程的依赖,通过在用户空间执行Dockerfile命令来构建镜像。这种方法使kaniko能在传统Docker难以安全运行的环境中工作。kaniko支持多样化的构建上下文,内置缓存机制,并能将镜像推送到各类容器注册表。其灵活性和安全性使其成为现代容器化环境中的理想选择。

kaniko容器镜像构建KubernetesDockerfile无Docker守护进程Github开源项目

kaniko - Build Images In Kubernetes

🚨NOTE: kaniko is not an officially supported Google product🚨

Unit tests Integration tests Build images Go Report Card

kaniko logo

kaniko is a tool to build container images from a Dockerfile, inside a container or Kubernetes cluster.

kaniko doesn't depend on a Docker daemon and executes each command within a Dockerfile completely in userspace. This enables building container images in environments that can't easily or securely run a Docker daemon, such as a standard Kubernetes cluster.

kaniko is meant to be run as an image: gcr.io/kaniko-project/executor. We do not recommend running the kaniko executor binary in another image, as it might not work as you expect - see Known Issues.

We'd love to hear from you! Join us on #kaniko Kubernetes Slack

:mega: Please fill out our quick 5-question survey so that we can learn how satisfied you are with kaniko, and what improvements we should make. Thank you! :dancers:

If you are interested in contributing to kaniko, see DEVELOPMENT.md and CONTRIBUTING.md.

<!-- START doctoc generated TOC please keep comment here to allow auto update --> <!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->

Table of Contents generated with DocToc

<!-- END doctoc generated TOC please keep comment here to allow auto update -->

Community

We'd love to hear from you! Join #kaniko on Kubernetes Slack

How does kaniko work?

The kaniko executor image is responsible for building an image from a Dockerfile and pushing it to a registry. Within the executor image, we extract the filesystem of the base image (the FROM image in the Dockerfile). We then execute the commands in the Dockerfile, snapshotting the filesystem in userspace after each one. After each command, we append a layer of changed files to the base image (if there are any) and update image metadata.

Known Issues

  • kaniko does not support building Windows containers.
  • Running kaniko in any Docker image other than the official kaniko image is not supported due to implementation details.
    • This includes copying the kaniko executables from the official image into another image (e.g. a Jenkins CI agent).
    • In particular, it cannot use chroot or bind-mount because its container must not require privilege, so it unpacks directly into its own container root and may overwrite anything already there.
  • kaniko does not support the v1 Registry API (Registry v1 API Deprecation)

Demo

Demo

Tutorial

For a detailed example of kaniko with local storage, please refer to a getting started tutorial.

Please see References for more docs & video tutorials

Using kaniko

To use kaniko to build and push an image for you, you will need:

  1. A build context, aka something to build
  2. A running instance of kaniko

kaniko Build Contexts

kaniko's build context is very similar to the build context you would send your Docker daemon for an image build; it represents a directory containing a Dockerfile which kaniko will use to build your image. For example, a COPY command in your Dockerfile should refer to a file in the build context.

You will need to store your build context in a place that kaniko can access. Right now, kaniko supports these storage solutions:

  • GCS Bucket
  • S3 Bucket
  • Azure Blob Storage
  • Local Directory
  • Local Tar
  • Standard Input
  • Git Repository

Note about Local Directory: this option refers to a directory within the kaniko container. If you wish to use this option, you will need to mount in your build context into the container as a directory.

Note about Local Tar: this option refers to a tar gz file within the kaniko container. If you wish to use this option, you will need to mount in your build context into the container as a file.

Note about Standard Input: the only Standard Input allowed by kaniko is in .tar.gz format.

If using a GCS or S3 bucket, you will first need to create a compressed tar of your build context and upload it to your bucket. Once running, kaniko will then download and unpack the compressed tar of the build context before starting the image build.

To create a compressed tar, you can run:

tar -C <path to build context> -zcvf context.tar.gz .

Then, copy over the compressed tar into your bucket. For example, we can copy over the compressed tar to a GCS bucket with gsutil:

gsutil cp context.tar.gz gs://<bucket name>

When running kaniko, use the --context flag with the appropriate prefix to specify the location of your build context:

SourcePrefixExample
Local Directorydir://[path to a directory in the kaniko container]dir:///workspace
Local Tar Gztar://[path to a .tar.gz in the kaniko container]tar:///path/to/context.tar.gz
Standard Inputtar://[stdin]tar://stdin
GCS Bucketgs://[bucket name]/[path to .tar.gz]gs://kaniko-bucket/path/to/context.tar.gz
S3 Buckets3://[bucket name]/[path to .tar.gz]s3://kaniko-bucket/path/to/context.tar.gz
Azure Blob Storagehttps://[account].[azureblobhostsuffix]/[container]/[path to .tar.gz]https://myaccount.blob.core.windows.net/container/path/to/context.tar.gz
Git Repositorygit://[repository url][#reference][#commit-id]git://github.com/acme/myproject.git#refs/heads/mybranch#<desired-commit-id>

If you don't specify a prefix, kaniko will assume a local directory. For example, to use a GCS bucket called kaniko-bucket, you would pass in --context=gs://kaniko-bucket/path/to/context.tar.gz.

Using Azure Blob Storage

If you are using Azure Blob Storage for context file, you will need to pass Azure Storage Account Access Key as an environment variable named AZURE_STORAGE_ACCESS_KEY through Kubernetes Secrets

Using Private Git Repository

You can use Personal Access Tokens for Build Contexts from Private Repositories from GitHub.

You can either pass this in as part of the git URL (e.g., git://TOKEN@github.com/acme/myproject.git#refs/heads/mybranch) or using the environment variable GIT_TOKEN.

You can also pass GIT_USERNAME and GIT_PASSWORD (password being the token) if you want to be explicit about the username.

Using Standard Input

If running kaniko and using Standard Input build context, you will need to add the docker or kubernetes -i, --interactive flag. Once running, kaniko will then get the data from STDIN and create the build context as a compressed tar. It will then unpack the compressed tar of the build context before starting the image build. If no data is piped during the interactive run, you will need to send the EOF signal by yourself by pressing Ctrl+D.

Complete example of how to interactively run kaniko with .tar.gz Standard Input data, using docker:

echo -e 'FROM alpine \nRUN echo "created from standard input"' > Dockerfile | tar -cf - Dockerfile | gzip -9 | docker run \ --interactive -v $(pwd):/workspace gcr.io/kaniko-project/executor:latest \ --context tar://stdin \ --destination=<gcr.io/$project/$image:$tag>

Complete example of how to interactively run kaniko with .tar.gz Standard Input data, using Kubernetes command line with a temporary container and completely dockerless:

echo -e 'FROM alpine \nRUN echo "created from standard input"' > Dockerfile | tar -cf - Dockerfile | gzip -9 | kubectl run kaniko \ --rm --stdin=true \ --image=gcr.io/kaniko-project/executor:latest --restart=Never \ --overrides='{ "apiVersion": "v1", "spec": { "containers": [ { "name": "kaniko", "image": "gcr.io/kaniko-project/executor:latest", "stdin": true, "stdinOnce": true, "args": [ "--dockerfile=Dockerfile", "--context=tar://stdin", "--destination=gcr.io/my-repo/my-image" ], "volumeMounts": [ { "name": "cabundle", "mountPath": "/kaniko/ssl/certs/" }, { "name": "docker-config", "mountPath": "/kaniko/.docker/" } ] } ], "volumes": [ { "name": "cabundle", "configMap": { "name": "cabundle" } }, {

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多