kaniko is a tool to build container images from a Dockerfile, inside a container or Kubernetes cluster.
kaniko doesn't depend on a Docker daemon and executes each command within a Dockerfile completely in userspace. This enables building container images in environments that can't easily or securely run a Docker daemon, such as a standard Kubernetes cluster.
kaniko is meant to be run as an image: gcr.io/kaniko-project/executor
. We do
not recommend running the kaniko executor binary in another image, as it
might not work as you expect - see Known Issues.
We'd love to hear from you! Join us on #kaniko Kubernetes Slack
:mega: Please fill out our quick 5-question survey so that we can learn how satisfied you are with kaniko, and what improvements we should make. Thank you! :dancers:
If you are interested in contributing to kaniko, see DEVELOPMENT.md and CONTRIBUTING.md.
<!-- START doctoc generated TOC please keep comment here to allow auto update --> <!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->Table of Contents generated with DocToc
--build-arg
--cache
--cache-dir
--cache-repo
--cache-copy-layers
--cache-run-layers
--cache-ttl duration
--cleanup
--compressed-caching
--context-sub-path
--custom-platform
--digest-file
--dockerfile
--force
--git
--image-name-with-digest-file
--image-name-tag-with-digest-file
--insecure
--insecure-pull
--insecure-registry
--label
--log-format
--log-timestamp
--no-push
--no-push-cache
--oci-layout-path
--push-retry
--registry-certificate
--registry-client-cert
--registry-map
--registry-mirror
--skip-default-registry-fallback
--reproducible
--single-snapshot
--skip-push-permission-check
--skip-tls-verify
--skip-tls-verify-pull
--skip-tls-verify-registry
--skip-unused-stages
--snapshot-mode
--tar-path
--target
--use-new-run
--verbosity
--ignore-var-run
--ignore-path
--image-fs-extract-retry
--image-download-retry
We'd love to hear from you! Join #kaniko on Kubernetes Slack
The kaniko executor image is responsible for building an image from a Dockerfile and pushing it to a registry. Within the executor image, we extract the filesystem of the base image (the FROM image in the Dockerfile). We then execute the commands in the Dockerfile, snapshotting the filesystem in userspace after each one. After each command, we append a layer of changed files to the base image (if there are any) and update image metadata.
For a detailed example of kaniko with local storage, please refer to a getting started tutorial.
Please see References for more docs & video tutorials
To use kaniko to build and push an image for you, you will need:
kaniko's build context is very similar to the build context you would send your
Docker daemon for an image build; it represents a directory containing a
Dockerfile which kaniko will use to build your image. For example, a COPY
command in your Dockerfile should refer to a file in the build context.
You will need to store your build context in a place that kaniko can access. Right now, kaniko supports these storage solutions:
Note about Local Directory: this option refers to a directory within the kaniko container. If you wish to use this option, you will need to mount in your build context into the container as a directory.
Note about Local Tar: this option refers to a tar gz file within the kaniko container. If you wish to use this option, you will need to mount in your build context into the container as a file.
Note about Standard Input: the only Standard Input allowed by kaniko is in
.tar.gz
format.
If using a GCS or S3 bucket, you will first need to create a compressed tar of your build context and upload it to your bucket. Once running, kaniko will then download and unpack the compressed tar of the build context before starting the image build.
To create a compressed tar, you can run:
tar -C <path to build context> -zcvf context.tar.gz .
Then, copy over the compressed tar into your bucket. For example, we can copy over the compressed tar to a GCS bucket with gsutil:
gsutil cp context.tar.gz gs://<bucket name>
When running kaniko, use the --context
flag with the appropriate prefix to
specify the location of your build context:
Source | Prefix | Example |
---|---|---|
Local Directory | dir://[path to a directory in the kaniko container] | dir:///workspace |
Local Tar Gz | tar://[path to a .tar.gz in the kaniko container] | tar:///path/to/context.tar.gz |
Standard Input | tar://[stdin] | tar://stdin |
GCS Bucket | gs://[bucket name]/[path to .tar.gz] | gs://kaniko-bucket/path/to/context.tar.gz |
S3 Bucket | s3://[bucket name]/[path to .tar.gz] | s3://kaniko-bucket/path/to/context.tar.gz |
Azure Blob Storage | https://[account].[azureblobhostsuffix]/[container]/[path to .tar.gz] | https://myaccount.blob.core.windows.net/container/path/to/context.tar.gz |
Git Repository | git://[repository url][#reference][#commit-id] | git://github.com/acme/myproject.git#refs/heads/mybranch#<desired-commit-id> |
If you don't specify a prefix, kaniko will assume a local directory. For
example, to use a GCS bucket called kaniko-bucket
, you would pass in
--context=gs://kaniko-bucket/path/to/context.tar.gz
.
If you are using Azure Blob Storage for context file, you will need to pass
Azure Storage Account Access Key
as an environment variable named AZURE_STORAGE_ACCESS_KEY
through Kubernetes
Secrets
You can use Personal Access Tokens
for Build Contexts from Private
Repositories from
GitHub.
You can either pass this in as part of the git URL (e.g.,
git://TOKEN@github.com/acme/myproject.git#refs/heads/mybranch
) or using the
environment variable GIT_TOKEN
.
You can also pass GIT_USERNAME
and GIT_PASSWORD
(password being the token)
if you want to be explicit about the username.
If running kaniko and using Standard Input build context, you will need to add
the docker or kubernetes -i, --interactive
flag. Once running, kaniko will
then get the data from STDIN
and create the build context as a compressed tar.
It will then unpack the compressed tar of the build context before starting the
image build. If no data is piped during the interactive run, you will need to
send the EOF signal by yourself by pressing Ctrl+D
.
Complete example of how to interactively run kaniko with .tar.gz
Standard
Input data, using docker:
echo -e 'FROM alpine \nRUN echo "created from standard input"' > Dockerfile | tar -cf - Dockerfile | gzip -9 | docker run \ --interactive -v $(pwd):/workspace gcr.io/kaniko-project/executor:latest \ --context tar://stdin \ --destination=<gcr.io/$project/$image:$tag>
Complete example of how to interactively run kaniko with .tar.gz
Standard
Input data, using Kubernetes command line with a temporary container and
completely dockerless:
echo -e 'FROM alpine \nRUN echo "created from standard input"' > Dockerfile | tar -cf - Dockerfile | gzip -9 | kubectl run kaniko \ --rm --stdin=true \ --image=gcr.io/kaniko-project/executor:latest --restart=Never \ --overrides='{ "apiVersion": "v1", "spec": { "containers": [ { "name": "kaniko", "image": "gcr.io/kaniko-project/executor:latest", "stdin": true, "stdinOnce": true, "args": [ "--dockerfile=Dockerfile", "--context=tar://stdin", "--destination=gcr.io/my-repo/my-image" ], "volumeMounts": [ { "name": "cabundle", "mountPath": "/kaniko/ssl/certs/" }, { "name": "docker-config", "mountPath": "/kaniko/.docker/" } ] } ], "volumes": [ { "name": "cabundle", "configMap": { "name": "cabundle" } }, {
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率 和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好 者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能 服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从 内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号