
kaniko is a tool to build container images from a Dockerfile, inside a container or Kubernetes cluster.
kaniko doesn't depend on a Docker daemon and executes each command within a Dockerfile completely in userspace. This enables building container images in environments that can't easily or securely run a Docker daemon, such as a standard Kubernetes cluster.
kaniko is meant to be run as an image: gcr.io/kaniko-project/executor. We do
not recommend running the kaniko executor binary in another image, as it
might not work as you expect - see Known Issues.
We'd love to hear from you! Join us on #kaniko Kubernetes Slack
:mega: Please fill out our quick 5-question survey so that we can learn how satisfied you are with kaniko, and what improvements we should make. Thank you! :dancers:
If you are interested in contributing to kaniko, see DEVELOPMENT.md and CONTRIBUTING.md.
<!-- START doctoc generated TOC please keep comment here to allow auto update --> <!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->Table of Contents generated with DocToc
--build-arg--cache--cache-dir--cache-repo--cache-copy-layers--cache-run-layers--cache-ttl duration--cleanup--compressed-caching--context-sub-path--custom-platform--digest-file--dockerfile--force--git--image-name-with-digest-file--image-name-tag-with-digest-file--insecure--insecure-pull--insecure-registry--label--log-format--log-timestamp--no-push--no-push-cache--oci-layout-path--push-retry--registry-certificate--registry-client-cert--registry-map--registry-mirror--skip-default-registry-fallback--reproducible--single-snapshot--skip-push-permission-check--skip-tls-verify--skip-tls-verify-pull--skip-tls-verify-registry--skip-unused-stages--snapshot-mode--tar-path--target--use-new-run--verbosity--ignore-var-run--ignore-path--image-fs-extract-retry--image-download-retryWe'd love to hear from you! Join #kaniko on Kubernetes Slack
The kaniko executor image is responsible for building an image from a Dockerfile and pushing it to a registry. Within the executor image, we extract the filesystem of the base image (the FROM image in the Dockerfile). We then execute the commands in the Dockerfile, snapshotting the filesystem in userspace after each one. After each command, we append a layer of changed files to the base image (if there are any) and update image metadata.

For a detailed example of kaniko with local storage, please refer to a getting started tutorial.
Please see References for more docs & video tutorials
To use kaniko to build and push an image for you, you will need:
kaniko's build context is very similar to the build context you would send your
Docker daemon for an image build; it represents a directory containing a
Dockerfile which kaniko will use to build your image. For example, a COPY
command in your Dockerfile should refer to a file in the build context.
You will need to store your build context in a place that kaniko can access. Right now, kaniko supports these storage solutions:
Note about Local Directory: this option refers to a directory within the kaniko container. If you wish to use this option, you will need to mount in your build context into the container as a directory.
Note about Local Tar: this option refers to a tar gz file within the kaniko container. If you wish to use this option, you will need to mount in your build context into the container as a file.
Note about Standard Input: the only Standard Input allowed by kaniko is in
.tar.gz format.
If using a GCS or S3 bucket, you will first need to create a compressed tar of your build context and upload it to your bucket. Once running, kaniko will then download and unpack the compressed tar of the build context before starting the image build.
To create a compressed tar, you can run:
tar -C <path to build context> -zcvf context.tar.gz .
Then, copy over the compressed tar into your bucket. For example, we can copy over the compressed tar to a GCS bucket with gsutil:
gsutil cp context.tar.gz gs://<bucket name>
When running kaniko, use the --context flag with the appropriate prefix to
specify the location of your build context:
| Source | Prefix | Example |
|---|---|---|
| Local Directory | dir://[path to a directory in the kaniko container] | dir:///workspace |
| Local Tar Gz | tar://[path to a .tar.gz in the kaniko container] | tar:///path/to/context.tar.gz |
| Standard Input | tar://[stdin] | tar://stdin |
| GCS Bucket | gs://[bucket name]/[path to .tar.gz] | gs://kaniko-bucket/path/to/context.tar.gz |
| S3 Bucket | s3://[bucket name]/[path to .tar.gz] | s3://kaniko-bucket/path/to/context.tar.gz |
| Azure Blob Storage | https://[account].[azureblobhostsuffix]/[container]/[path to .tar.gz] | https://myaccount.blob.core.windows.net/container/path/to/context.tar.gz |
| Git Repository | git://[repository url][#reference][#commit-id] | git://github.com/acme/myproject.git#refs/heads/mybranch#<desired-commit-id> |
If you don't specify a prefix, kaniko will assume a local directory. For
example, to use a GCS bucket called kaniko-bucket, you would pass in
--context=gs://kaniko-bucket/path/to/context.tar.gz.
If you are using Azure Blob Storage for context file, you will need to pass
Azure Storage Account Access Key
as an environment variable named AZURE_STORAGE_ACCESS_KEY through Kubernetes
Secrets
You can use Personal Access Tokens for Build Contexts from Private
Repositories from
GitHub.
You can either pass this in as part of the git URL (e.g.,
git://TOKEN@github.com/acme/myproject.git#refs/heads/mybranch) or using the
environment variable GIT_TOKEN.
You can also pass GIT_USERNAME and GIT_PASSWORD (password being the token)
if you want to be explicit about the username.
If running kaniko and using Standard Input build context, you will need to add
the docker or kubernetes -i, --interactive flag. Once running, kaniko will
then get the data from STDIN and create the build context as a compressed tar.
It will then unpack the compressed tar of the build context before starting the
image build. If no data is piped during the interactive run, you will need to
send the EOF signal by yourself by pressing Ctrl+D.
Complete example of how to interactively run kaniko with .tar.gz Standard
Input data, using docker:
echo -e 'FROM alpine \nRUN echo "created from standard input"' > Dockerfile | tar -cf - Dockerfile | gzip -9 | docker run \ --interactive -v $(pwd):/workspace gcr.io/kaniko-project/executor:latest \ --context tar://stdin \ --destination=<gcr.io/$project/$image:$tag>
Complete example of how to interactively run kaniko with .tar.gz Standard
Input data, using Kubernetes command line with a temporary container and
completely dockerless:
echo -e 'FROM alpine \nRUN echo "created from standard input"' > Dockerfile | tar -cf - Dockerfile | gzip -9 | kubectl run kaniko \ --rm --stdin=true \ --image=gcr.io/kaniko-project/executor:latest --restart=Never \ --overrides='{ "apiVersion": "v1", "spec": { "containers": [ { "name": "kaniko", "image": "gcr.io/kaniko-project/executor:latest", "stdin": true, "stdinOnce": true, "args": [ "--dockerfile=Dockerfile", "--context=tar://stdin", "--destination=gcr.io/my-repo/my-image" ], "volumeMounts": [ { "name": "cabundle", "mountPath": "/kaniko/ssl/certs/" }, { "name": "docker-config", "mountPath": "/kaniko/.docker/" } ] } ], "volumes": [ { "name": "cabundle", "configMap": { "name": "cabundle" } }, {


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号