Linformer是由Facebook AI Research团队在2020年提出的一种新型Transformer变体模型。它的主要创新点在于将传统Transformer中O(n^2)复杂度的自注意力机制改进为O(n)的线性复杂度,从而大大提高了模型的计算效率,使其能够处理更长的序列。
Linformer的核心思想是通过低秩矩阵分解来近似自注意力矩阵,将原本n×n的注意力矩阵压缩为n×k的形式,其中k远小于n。这种方法不仅降低了计算复杂度,还显著减少了内存占用,同时在多项NLP任务上保持了与标准Transformer相当的性能。
标准Transformer中的自注意力机制计算如下:
Attention(Q, K, V) = softmax(QK^T / √d)V
其中Q、K、V分别是查询、键和值矩阵,维度均为n×d。这个计算过程的时间和空间复杂度都是O(n^2)。
Linformer通过引入两个投影矩阵E和F (维度均为k×n),将K和V投影到一个较低的维度k:
K' = EK, V' = FV
然后用K'和V'替代原始的K和V进行注意力计算:
Attention(Q, K', V') = softmax(QK'^T / √d)V'
这样,注意力矩阵的维度就从n×n变为了n×k,复杂度降为O(nk)。当k固定时,复杂度就变成了O(n)。
为了进一步减少参数量,Linformer还引入了多种参数共享策略:
这些共享策略可以大幅减少模型参数,同时实验表明对性能影响不大。
Linformer已经在多个自然语言处理任务中展现出了优秀的性能:
以下是使用PyTorch实现Linformer的简单示例:
import torch from linformer import LinformerLM model = LinformerLM( num_tokens = 20000, dim = 512, seq_len = 4096, depth = 12, heads = 8, k = 256, one_kv_head = True, share_kv = False ) x = torch.randint(0, 20000, (1, 4096)) output = model(x) # (1, 4096, 20000)
这个例子展示了如何创建一个Linformer语言模型,并对一个长度为4096的输入序列进行处理。
尽管Linformer在效率方面有显著优势,但它也存在一些局限性:
Linformer作为一种高效的Transformer变体,通过巧妙的低秩近似和参数共享策略,成功将自注意力机制的复杂度从二次降低到线性,为处理长序列NLP任务提供了新的可能性。虽然它也有一些局限性,但其在效率和性能之间取得的平衡使其成为一个非常有前景的模型,特别是在需要处理大规模数据和长序列的场景中。
随着深度学习模型规模的不断增大,像Linformer这样能够提高计算效率的创新将变得越来越重要。我们可以期待在Linformer的基础上,未来会出现更多改进的高效Transformer变体,进一步推动自然语言处理技术的发展。
图1: Linformer的整体架构
Wang, S., Li, B. Z., Khabsa, M., Fang, H., & Ma, H. (2020). Linformer: Self-Attention with Linear Complexity. arXiv preprint arXiv:2006.04768.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).
Linformer为我们展示了如何通过巧妙的数学技巧来优化深度学习模型的效率。它不仅是一个具体的模型实现,更代表了一种思路——在保持模型表达能力的同时,如何突破计算瓶颈,使模型能够应对更大规模的数据和更复杂的任务。这种思路无疑将继续推动人工智能领域的创新和发展。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音 高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
最新AI工具、AI资讯
独家AI资源、AI项目落地